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Visualization of free energy landscape in spinodal decomposition using persistent
homology combined with unsupervised machine learning
Tokyo Univ. of Science!, ©Alexandre Lira Foggiatto!, Hirotaka Aoki', Sotaro Kunii!, Masato
Kotsugi'
E-mail: a.foggiatto@rs.tus.ac.jp

Although, nowadays, the amount of available image data is enormous, the discoveries are still limited by
the analysis process which is not improving at the same rate as the data extraction. Materials informatics
is an emergent field that deals with this problem by combining computer and material science. Many
prediction models and material discovery has been done using this methodology, but there is still a
lack of application in more fundamental researches. Persistent homology is a powerful tool to extract
topological features from the microstructure, such as the size, shapes, and connectivity of holes. It can
also be combined with machine learning to find hiding correlations between variables in the data set.

In this work, we prepared spinodal decomposition images using phase-field calculation and applied
persistent homology to study the relationship between free energy and morphology. The image sets
were prepared using different values for the gradient energy coeflicient («), a parameter that controls the
probability of phase separation. We prepared 5 sets of 400 images for each value of x and we computed
the total free energy (Fig. 1) at each step to confirm the convergence of the calculation. After concluding
the simulation, persistent homology was applied to image sets to obtain persistent diagrams (PD). The
PD maps the topological features of an image in a set of points ("birth”,”death”) that can be later analyzed
using machine learning or other informatics technique. In our case, an unsupervised machine learning
algorithm called kernel principal component analysis (PCA) was implemented to search for non-linear
correlations between the PDs (Fig. 2). The PCA scatter plot shows that the data can be separated and
clustered regarding the principal components based on the input values. One surprising result is that the
contribution of these two variables is near 1.0, which implies that a large amount of image data could
successfully be embedded in a low-dimensional manifold. One may concern about the extremities of Fig.
2. However, the free energy and image features are almost similar in these regions resulting in closer
points in the principal components.

Concretely, the separation of x and continuity of energy value were successfully visualized. Thus,
we believe that this approach can be used in experimental images, and it might be helpful to improve the
analysis and to extract information of hidden parameters.
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Figure 1: Total free energy as a function of time ~ Figure 2: PCA decomposition as a function
for different values of nx«. of the total free energy.
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