エピタキシャル HfGe2 形成による金属/n-Ge コンタクト抵抗率の低減 Reduction of metal/n-Ge contact resistivity by epitaxial HfGe2 formation

¹名大院工,²名古屋大未来研 [°]千賀一輝,¹ 柴山茂久,¹中塚理^{1,2}

¹Grad. Sch. of Eng., Nagoya Univ., ²IMaSS, Nagoya Univ. [°]Kazuki Senga,¹ Shigehisa Shibayama,¹ Osamu Nakatsuka^{1, 2}

E-mail: nakatsuka@nagoya-u.jp

【研究背景】Ge チャネル CMOS トランジスタ実用化に向け、金属/n-Ge 界面のコンタクト抵抗率 低減は重要な課題である。高抵抗の原因の一つとして、金属/n-Ge 界面におけるフェルミレベルピ ニング現象による、高いショットキー障壁高さ(SBH)がある[1,2]。我々は、界面構造に注目し、 固相反応によりエピタキシャル HfGe₂/n-Ge(001)界面構造を形成することで SBH を 0.33 eV まで低 減できることを報告した[3–5]。本講演では、低抵抗コンタクトの実現に向け、HfGe₂/n⁺-Ge(001)界 面におけるコンタクト抵抗率を評価した結果について報告する。

【試料作製】不純物濃度が約 1.0×10^{15} cm⁻³ の *p*-Ge(001)基板に対してリン(P)のイオン注入を行い、不純物濃度 N_D =1.1×10¹⁹および 7.8×10^{19} cm⁻³の *n*⁺-Ge を形成した。リソグラフィによるコンタクト領域を開口後、スパッタリング法により Hf (膜厚 30 nm)および TiN (50 nm)を順次室温において堆積した。その後、リフトオフにより Circular Transmission Line Model (C-TLM)の電極パターンを形成した。最後に、エピタキシャル HfGe₂/*n*⁺-Ge 界面を形成するため、600 °C、30 s の窒素熱処理を行った。X線回折法により、*n*⁺-Ge(001)上への HfGe₂ エピタキシャル成長を確認した(掲載省略)。四端子測定により HfGe₂/*n*⁺-Ge(001)コンタクト抵抗率を評価した。

【結果及び考察】電流-電圧(*I-V*)特性から、Hf/n⁺-Ge および HfGe₂/n⁺-Ge は、 N_D =1.1×10¹⁹ cm⁻³以上で、共にオーミック特性を示す(Fig. 1)。また、HfGe₂/n⁺-Ge の方が *I-V*特性の傾きが急峻であり、コンタクト抵抗率の低減が示唆される。様々な電極間距離に対して測定された抵抗をプロットした結果を Fig. 2 に示す。切片より Hf/n⁺-Ge および HfGe₂/n⁺-Ge 試料のコンタクト抵抗率はそれぞれ、1.8×10⁻⁶ および 6.7×10⁻⁸ Ω cm² と求められた。n⁺-Ge 層のシート抵抗に相当する傾きは、HfGe₂形成前後で変化しておらず、このコンタクト抵抗率低減は、SBH が 0.42 eV から 0.33 eV に低減されたことに由来すると考えられる。また、エピタキシャル HfGe₂/n⁺-Ge コンタクトは、最も高いドーピング濃度の試料(N_D =7.8×10¹⁹ cm⁻³)において 2–5×10⁻⁹ Ω cm² の低コンタクト抵抗率を示し、より高い SBH を有する Al や NiGe/n⁺-Ge コンタクトと比較しても低い値であった。

【謝辞】本研究の一部は、キオクシア株式会社(旧社名 東芝メモリ株式会社)の支援をうけて実施された。

【参考文献】[1] A. Dimoulas et al., APL 89, 252110 (2006). [2] T. Nishimura et al., APL 91, 123123 (2007) etc. [3] O. Nakatsuka et al., JJAP 57, 07MA05 (2018). [4] 千賀一輝ら, 第 79 回応用物理学会秋季学術 講演会, 19a-233-3. [5] K. Senga et al., in Abstra. of 19th IWJT, p. 91 (2019).

Fig. 2. Resistance vs contact spacing data with analytical fitting for Hf and HfGe₂/ n^+ -Ge (N_D =1.1×10¹⁹ cm⁻³) C-TLM contacts at 300 K.