エピタキシャル HfGe2 形成による金属/n-Ge コンタクト抵抗率の低減

Reduction of metal/n-Ge contact resistivity by epitaxial HfGe2 formation

1名大院工,2名古屋大未来研 ○千賀一輝,1 柴山茂久,1中塚理 1,2

¹Grad. Sch. of Eng., Nagoya Univ., ²IMaSS, Nagoya Univ.

°Kazuki Senga, 1 Shigehisa Shibayama, 1 Osamu Nakatsuka 1,2

E-mail: nakatsuka@nagoya-u.jp

【研究背景】Ge チャネル CMOS トランジスタ実用化に向け、金属/n-Ge 界面のコンタクト抵抗率低減は重要な課題である。高抵抗の原因の一つとして、金属/n-Ge 界面におけるフェルミレベルピニング現象による、高いショットキー障壁高さ(SBH)がある[1,2]。我々は、界面構造に注目し、固相反応によりエピタキシャル $HfGe_2/n$ -Ge(001)界面構造を形成することで SBH を 0.33 eV まで低減できることを報告した[3–5]。本講演では、低抵抗コンタクトの実現に向け、 $HfGe_2/n^+$ -Ge(001)界面におけるコンタクト抵抗率を評価した結果について報告する。

【試料作製】不純物濃度が約 1.0×10^{15} cm⁻³ の p-Ge(001)基板に対してリン (P) のイオン注入を行い、不純物濃度 N_D = 1.1×10^{19} および 7.8×10^{19} cm⁻³ の n^+ -Ge を形成した。リソグラフィによるコンタクト領域を開口後、スパッタリング法により Hf (膜厚 $30\,\mathrm{nm}$) および TiN ($50\,\mathrm{nm}$) を順次室温において堆積した。その後、リフトオフにより Circular Transmission Line Model (C-TLM) の電極パターンを形成した。最後に、エピタキシャル HfGe₂/ n^+ -Ge 界面を形成するため、 $600\,\mathrm{^{\circ}C}$ 、 $30\,\mathrm{s}$ の窒素熱処理を行った。X 線回折法により、 n^+ -Ge(001)上への HfGe₂ エピタキシャル成長を確認した(掲載省略)。四端子測定により HfGe₂/ n^+ -Ge(001)コンタクト抵抗率を評価した。

【結果及び考察】電流-電圧 (*I-V*) 特性から、 Hf/n^+ -Ge および $HfGe_2/n^+$ -Ge は、 N_D =1.1×10¹⁹ cm⁻³ 以上で、共にオーミック特性を示す(Fig. 1)。また、 $HfGe_2/n^+$ -Ge の方が *I-V* 特性の傾きが急峻であり、コンタクト抵抗率の低減が示唆される。様々な電極間距離に対して測定された抵抗をプロットした結果を Fig. 2 に示す。切片より Hf/n^+ -Ge および $HfGe_2/n^+$ -Ge 試料のコンタクト抵抗率はそれぞれ、 1.8×10^{-6} および 6.7×10^{-8} Ω cm² と求められた。 n^+ -Ge 層のシート抵抗に相当する傾きは、 $HfGe_2$ 形成前後で変化しておらず、このコンタクト抵抗率低減は、SBH が 0.42 eV から 0.33 eV に低減されたことに由来すると考えられる。また、エピタキシャル $HfGe_2/n^+$ -Ge コンタクトは、最も高いドーピング濃度の試料 (N_D =7.8×10¹⁹ cm⁻³) において $2-5\times10^{-9}$ Ω cm² の低コンタクト抵抗率を示し、より高い SBH を有する Al や NiGe/ n^+ -Ge コンタクトと比較しても低い値であった。

【謝辞】本研究の一部は、キオクシア株式会社(旧社名 東芝メモリ株式会社)の支援をうけて実施された。

【参考文献】[1] A. Dimoulas *et al.*, APL **89**, 252110 (2006). [2] T. Nishimura *et al.*, APL **91**, 123123 (2007) etc. [3] O. Nakatsuka *et al.*, JJAP **57**, 07MA05 (2018). [4] 千賀一輝ら,第 79 回応用物理学会秋季学術講演会,19a-233-3. [5] K. Senga *et al.*, *in Abstra. of 19th IWJT*, p. 91 (2019).

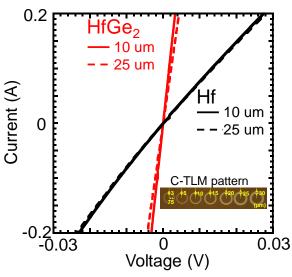


Fig. 1. I-V characteristics of Hf and HfGe₂/n⁺-Ge (N_D =1.1×10¹⁹ cm⁻³) C-TLM contacts at 300 K.

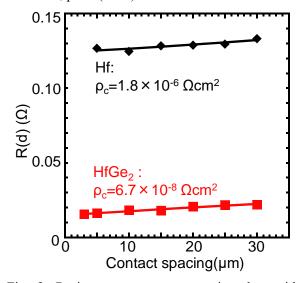


Fig. 2. Resistance vs contact spacing data with analytical fitting for Hf and HfGe₂/ n^+ -Ge (N_D =1.1×10¹⁹ cm⁻³) C-TLM contacts at 300 K.