1000°C酸素アニールで Si $0_2/\beta$ -Ga $_20_3$ 界面に生じる絶縁性 Ga $_20_3$ 層とその MOS 特性への影響

Insulating Ga₂O₃ layer formation at SiO₂/β-Ga₂O₃ interface during oxygen annealing at 1000°C and its impact on Ga₂O₃ MOS interface characteristics

東京大学大学院工学部研究科 マテリアル工学専攻 ^O茅 欽, 喜多 浩之 Department of Materials Engineering, The University of Tokyo, ^oQin MAO, Koji KITA E-mail: qmao@scio.t.u-tokyo.ac.jp

[Introduction] We have demonstrated the formation of SiO₂/ β -Ga₂O₃ MOS interface with very low D_{it} (< 10¹¹ cm⁻²eV⁻¹) using PDA at 1000°C in O₂ [1]. On the other hand, it is well known that O₂ annealing at elevated temperatures induces a significant increase of the resistivity of β -Ga₂O₃ surface, by forming thin insulating layer [2], where the effective carrier density is significantly reduced. In this study we investigated the impacts of oxidation-induced insulating β -Ga₂O₃ layer formation at SiO₂/ β -Ga₂O₃ interface during high temperature oxygen annealing on the characteristics of the MOS capacitors.

[Experimental] After surface cleaning of β -Ga₂O₃ (001) wafers with n-type epitaxial layers (carrier density ~ 10¹⁶ cm⁻³) in 5% HF, SiO₂ films were deposited by electron-beam evaporation of Si in O₂ flow (~ 10⁻² Pa), followed by PDA in O₂ at 600-1000°C. The XRR (x-ray reflectivity) measurements were employed to determine T_{SiO2} (SiO₂ physical thickness). Au gates were evaporated to fabricate Au/SiO₂/ β -Ga₂O₃ (001) MOS capacitors, to determine the CET (capacitance equivalent thickness, defined as $\varepsilon_{SiO2}/C_{max}$) as well as N_d (effective carrier density) from $C^{-2}-V$ relationship under depletion bias.

[Results & discussions] Figure 1 shows T_{SiO2} before and after O₂ annealing for 1hr at 600°C or 1000°C, respectively. T_{SiO2} (initial $T_{SiO2} = 28$ nm case) increases a little by 600°C annealing, which may be explained by a compensation of oxygen deficiency, whereas it does not change even by increasing the temperature up to 1000°C, which indicates there is no significant intermixing of SiO₂ with Ga₂O₃. Meanwhile, according to Fig. 2, CET (initial $T_{SiO2} = 52$ nm case) dramatically increases by extending the annealing duration at 1000°C, or by increasing the annealing temperature. Such anomalous increase of CET is explainable by assuming the surface of Ga₂O₃ becomes insulating due to the O₂ annealing, and contributes as an additional dielectric layer grown under SiO₂. Taking account of higher dielectric constant of Ga₂O₃ (~10) than SiO₂ (~4), the surface region of Ga₂O₃ as thick as ~20 nm would work as insulating layer after 1hr O₂ annealing at 1000°C. Thus the "electrically active" MOS interface may exists deep inside of Ga₂O₃, which may be the reason why we can achieve the superior MOS characteristics by O₂ annealing at 1000°C. At the same time, we also detected the change of the depth profile of N_d , estimated from the C^2 -V relationship, as shown in Fig.3. The formation of a lower N_d region in a few hundreds of nanometers near the MOS interface is understandable as another impact of O₂ annealing at 1000°C on the surface of Ga₂O₃.

[Conclusions] Significant change of carrier density in the surface region of Ga₂O₃ in SiO₂/ β -Ga₂O₃ MOS capacitors by O₂ annealing at 1000°C was indicated to result in both the increase of the effective dielectric layer thickness and the formation of a lower N_d region with the depth of ~ a few hundreds of nanometers. Such change of the interface electrical structure may be related to the formation of MOS interface with significantly reduced D_{it}. This work was partly done in the collaboration with JST-LCS. References: [1] E. Suzuki et al., 2018 Spring Meeting of JSAP, 12a-M121-5. [2] T. Oshima et al., JJAP 52, 051101(2013).

Fig.1 Annealing temperature dependence of T_{SiO2} during 1hr O₂ annealing.

Fig.2 O₂ Annealing duration dependence of CET for 1000°C and 600°C.

Fig.3 Estimated profile of N_d of capacitors fabricated by annealing at 1000°C with various durations.