選択再成長高濃度ボロンドープ層の導入による ALD-Al₂O₃ダイヤモンド MOSFETs の接触抵抗低減; ドレイン電流密度 | I_{DS}| > 1 A/mm

Reduction of contact resistance of ALD-Al₂O₃ diamond MOSFETs

by selective regrowth high concentration boron doped layer;

Drain current density $|I_{DS}| > 1$ A/mm

早大理工¹,早大材研²,^O(B)鈴木 優紀子¹, 今西 祥一朗¹, 久樂 顕¹, 堀川 清貴¹, 天野 勝太郎¹, 岩瀧 雅幸¹, 森下 葵¹, 平岩 篤¹, 川原田 洋^{1,2}

Waseda Univ.¹, Kagami Memorial Research Institute for Materials Science and Technology.² °(B)Yukiko Suzuki¹, Shoichiro Imanishi¹, Ken Kudara¹, Kiyotaka Horikawa¹, Shotaro Amano¹, Masayuki Iwataki¹, Aoi Morishita¹, Atsushi Hiraiwa¹, Hiroshi Kawarada^{1,2}

E-mail: wuki1129-ast@moegi.waseda.jp

水素終端ダイヤモンドは高周波・高出力 p-FET として期待 されている。高周波増幅器の出力電力は Pout = { IDSmax × (Vmax - V_{knee}) } / 8 で表され、この式は高出力 FET の設計基本であ る。近年我々は Vmax の向上を目指し、厚いゲート絶縁膜・保 護膜として Al₂O₃ 100 nm を堆積させた高耐圧 ALD-Al₂O₃ダイ ヤモンド MOSFETs を作製することで、動作電圧 VDS.0 = -50 V にて p-FET で最高の高周波出力電力密度 Pout = 3.8 W/mm^[1] を報告した。しかし、高いオン抵抗 Ron = 30 Ω mm^[1]が高いニ ー電圧 Vkneeや最大ドレイン電流密度 IDSmax を制限する要因と なっていた。ソース・ドレイン電極間が微細な高周波デバイ スの場合、オン抵抗に対する接触抵抗の割合が大きい。実際 に従来構造でソース・ドレイン電極として用いていた TiC の 接触抵抗は9Ωmm^[2]程度であり、オン抵抗に対する接触抵抗 の割合は半分以上である。そのため接触抵抗を低減すること で大幅なデバイス特性の向上が見込める。本研究では接触抵 抗の低減を目指し、Fig.1のような超高濃度ボロンドープ成長 層を導入した ALD-Al₂O₃ダイヤモンド MOSFETs を作製し、 接触抵抗及び FET の直流特性と高周波特性を評価した。

Ib(111)単結晶基板上にアンドープ層 500 nm を形成し、反応 性イオンエッチングによりソース・ドレイン領域を選択的に 30 nm エッチングした。その後、超高濃度ボロンドープ層(B 濃度 10²² cm⁻³、以下 p⁺層) を追加エピタキシャル成長させた。 エッチングによって p⁺層と 2DHG の接触面積が十分確保され、 低抵抗化が期待できる。デバイスサイズは $L_{SD} = L_{ch} = 1 \mu m \sigma$ 全面オーバーラップ構造であり、Al₂O3 膜厚は 100 nm である。 続いて、TLM 法を用いて接触抵抗 Rc を評価した。Fig. 2 にボ ロンドープ電極間の距離を関数とした抵抗値を示す。Fig. 2 より Rc = 1.1 Ω mm が得られた。この値は従来の TiC を有す る構造(Rc = 9 Ω mm^[2])の 1/8 程度であり、ダイヤモンド FET 構造の中で最も低い。電極直下へのボロンドープ層の導入に より、接触抵抗の改善を確認した。Fig.3にパルス幅2ms, duty 比 5 %にて測定した $I_{DS} - V_{DS}$ 特性を示す。 $I_{DSmax} = -1170$ mA/mm ($V_{DS} = -20$ V)、オン抵抗 $R_{on} = 8.9 \Omega$ mm が得られた。 Rcの低減により $L_{SD} = L_{ch} = 1 \mu m$ で1A/mmを超える高いドレイン電流密度が再現性よく得られた。Fig.4に $V_{DS,Q} = -15 V$ 、 V_{GS.0} = -4 V の A 級動作、周波数 1GHz における大信号特性を 示す。出力電力密度 P_{out} = 1.1 W/mm、Gain = 6.0 dB が得られ た。従来の大信号特性評価より低い VDS,Q = -15 V にて Pout > 1 W/mm が得られたことから、ドリフト層を有する高耐圧構造 のデバイスを作製することで、さらなる高出力化が期待でき る。

[謝辞]本研究は、学際・国際的高度人材育成ライフイノベーション マテリアル双製共同研究プロジェクト(文科省)の支援を得た。

S. Imanishi, H. Kawarada et al: IEEE Electron Device Lett. 40 (2019) 279.
Y. Jingu, H. Kawarada et al: IEEE Transactions on Electron Devices, 3 (2010) 44001.

Fig. 4 Large signal performance at $V_{\text{DS, Q}} = -15 \text{ V}$