Improving the Spectral Purity of Single Photons from a Silicon Ring Resonator with Pump Pulse Optimization

Graduate School of Engineering, Tohoku Univ.¹, RIEC, Tohoku Univ.²

°Fan Yang¹, Hirohito Yamada¹, Keiichi Edamatsu², Nobuyuki Matsuda¹

E-mail: yang.fan.p6@dc.tohoku.ac.jp

Compact, high purity single photon source is a crucial tool for photonic quantum technologies. We can obtain spectrally-pure heralded single photons from a silicon microring resonator (MRR) via the spontaneous four-wave mixing (SFWM). However, the spectral purity P of photons generated from an MRR is limited to 0.92 [1]. To solve the issue, researchers [1] proposed to improve the spectral purity by the dual pulse pumping method, where interference between a temporally-overwrapping two pulses effectively manipulates the joint spectral amplitude (JSA). Here we propose a simpler scheme, where we can increase the spectral purity by solely manipulating the spectral phase distribution of a pump pulse.

The JSA of signal and idler photons generated from an MRR via SFWM can be obtained as $f(\omega_s, \omega_i) = F_p(\omega_s + \omega_i)l_s(\omega_s)l_i(\omega_i)$, where $F_p(\omega) = \int d\omega_p \alpha_p(\omega_p)\alpha_p(\omega - \omega_p)l_p(\omega_p)l_p(\omega - \omega_p)$. ω_p, ω_s and ω_h denote angular frequencies of the pump, signal and idler photons, respectively. $l_j(\omega)$ (j = p, s, i) is the square root of the Lorentzian function including the Q value at resonance frequencies of MRR [2]. The pump pulse amplitude $\alpha_p(\omega) = |\alpha_p(\omega)|e^{-i\Phi(\omega)}$, where $\phi(\omega) = \sum_{n=0}^{\infty} \frac{\phi_n(\omega - \omega_0)^n}{n!}$ is the spectral phase. When all the parameters ϕ_n are set to 0, *i.e.*, the pump is chirp free, we obtained a JSA shown in Fig. 1(a) having P of 0.92. Then we optimized the parameters ϕ_n to increase the purity. When $\phi_2 = -90 \text{ ps}^2$, $\phi_3 = -5,700 \text{ ps}^3$ and all the rest were 0, we obtained the JSA illustrated in Fig. 1(b) with P = 0.95, which exceeds the conventional bound. This is because the spectral chirp eliminates the Lorentzian side-lobe of $F_p(\omega)$ originating from the resonator spectrum $l_p(\omega)$, tailoring the JSA more center symmetric.

This work was supported by MEXT Q-LEAP Grant Number JPMXS0118067581.

Figure 1. Calculated JSA of the photon pairs (a) without and (b) with the pump pulse optimization.

References:

[1] J. B. Christensen et al., Opt. Lett. 43, 859 (2018). [2] Z. Vernon et al., Opt. Lett., 42, 3638 (2017).