ドレスト状態生成によるダイヤモンド NV 中心の コヒーレンス時間の長時間化

Extension of Coherence Time of NV Centers in Diamond by the Generation of Dressed States 京大化研 ¹, 金沢大 ², ⁰山下 峻吾 ¹, 森下 弘樹 ¹, Ernst David Herbschleb ¹,

徳田 規夫², 水落 憲和¹

ICR, Kyoto Univ.¹, Kanazawa Univ.², °Shungo Yamashita¹, Hiroki Morishita¹,

Ernst David Herbschleb¹, Norio Tokuda², Norikazu Mizuochi¹

E-mail: yamashita@dia.kuicr.kyoto-u.ac.jp

ダイヤモンド窒素一空孔(NV)中心の電子スピンは、 室温下でも長いコヒーレンス時間 (T₂*や T₂) を有するこ とから、量子センサや量子情報素子への応用が期待され ている[1]。量子センサの感度 η は、コヒーレンス時間 T_r (直流磁場感度では T_2 *、 交流磁場感度では T_2) と NV 中心の個数 N を用いて、 $\eta \sim 1/\sqrt{NT_x}$ と表せる[2]。つま りコヒーレンス時間が長く、かつ NV 中心の個数が多い ほど NV 量子センサの感度は高くなる。我々は、単一 NV 中心においてドレスト状態の Toが 2 桁以上長時間化し たこと[3]に着目し、アンサンブル NV 中心においてドレ スト状態を生成させ、直流磁場感度向上に重要となる T_2 * の長時間化を試みた。Fig.1 はアンサンブル NV 中心(濃 度: 1×10^{16} cm⁻³) の T_2 *をラムゼー法を用いて測定した結 果である。ドレスト状態を生成していないときは T_2^* = 0.51 ± 0.03 µs (Fig. 1(a))が得られたのに対して、ドレス ト状態を生成した時は T_2^* = 41 ± 16 μs (Fig. 1(b)) が得ら れた。この結果はドレスト状態生成により、1 桁以上も T_2 * が長時間化したことを示す。本講演では、ドレスト状態の

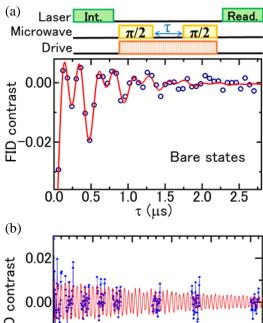


Fig.1 Pulse sequence and the results of T_2^* measurement of (a) bare states and (b) dressed states.

 T_2^* の長時間化の原理及び測定結果ついて議論する。本研究は、科研費(15H05868, 16H06326)、MEXT Q-LEAP(No. JPMXS0118067395)、京大化研共同研究拠点(No. 2019-102)の支援を得た。

参考文献

- [1] E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki, I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, N. Mizuochi, Nature communications, 10, 3766 (2019).
- [2] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D.Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, M. D. Lukin, Nat. Phys. 4, 810 (2008).
- [3] H. Morishita T. Tashima, D. Mima, H. Kato, T. Makino, S. Yamasaki, M. Fujiwara N. Mizuochi, Sci. Rep. 9, 13318 (2019).