CoFe₂O₄ 薄膜の磁気光学スペクトル測定による結晶歪みの評価

Evaluation of crystal strain of CoFe₂O₄ films by MO spectra measurement

¹ 長岡技科大, ² 筑波大, ³Charles Univ. ^O(M2)王 世浩 ¹, 安田 敬太 ¹, 小野田 浩成 ², 柳原 英人 ²,

Jan Hrabovsky³, Martin Veis³, 西川 雅美 ¹, 石橋 隆幸 ¹

Nagaoka Univ. Tech.¹, Univ. Tsukuba², Charles Univ.³, °S. Wang¹, K. Yasuda¹, H. Onoda², H. Yanagihara², J. Hrabovsky³, M. Veis³, M. Nishikawa¹, T. Ishibashi¹ E-mail: wangshihao@stn.nagaokaut.ac.jp

[はじめに]

コバルトフェライト(CFO)薄膜は面内歪みを導入することにより、大きな垂直磁気異方性を示す[1]。しかし、磁気異方性増大のメカニズムに関して局所的な歪みとの関係は、これまで明らかになっていない。今回は、可視から近赤外領域のCFO薄膜のファラデー効果を測定し、Co²+に関連した光学遷移について調査を行った。

[実験方法]

CFO 膜は、有機金属分解(MOD)法で作製した[2]。ガラス基板へ MOD 溶液(CoFeO4(1:2), (株)高純度化学研究所)をスピンコートにより塗布(3000 rpm, 30 sec)し、乾燥(100°C, 10 min)をホットプレートで行った。 その後、管状炉を用いて仮焼成($T_{pre}:320\sim350$ °C, 30 min)および本焼成(730°C, 10 h; $N_2=400$ mL/min)を行った。ファラデースペクトルの測定は、円偏光変調法を用いた MO スペクトロメーター[3]を使用した。測定波長範囲は $350\sim1650$ nm とした。

[結果および考察]

Fig.1 および Fig.2 にそれぞれファラデー 回転角、ファラデー楕円率のスペクトルを示す。これまでの報告と同様のスペクトル 形状が得られている。楕円率スペクトルでは、 λ = 400-900 nm と 1300-1600 nm に、ピークが観察されるが、仮焼成温度を変化させると、 λ = 400-900 nm の構造が大きく変化することがわかった。この原因は、 Co^{2+} を

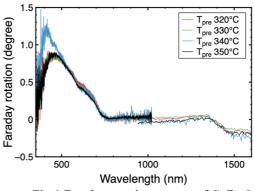


Fig.1 Faraday rotation spectra of CoFe₂O₄ films on glass.

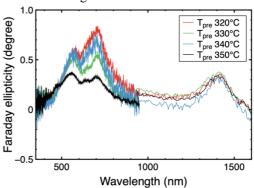


Fig.2 Faraday ellipticity spectra of CoFe₂O₄ films on glass.

含む八面体構造の歪みの大きさが変化した ためと考えられる。

[謝辞]

本研究は JST 委託研究「電子論に基づいたフェライト磁石の高磁気異方性化指針の確立」の助成を受けて行われた。

[参考文献]

- [1] T. Niizeki et al., APL. 103, 162407 (2013).
- [2] K. Yasuda et al., JJAP, 59, SEEA01 (2019).
- [3] S. Wang et al., JJAP, **59**, SEEA02 (2019).