反強磁性 Mn₃Ir におけるスピンホール効果 Spin Hall effect in antiferromagnetic Mn₃Ir

京大化研¹、[°]小林裕太¹、池渕徹也¹、岩城宏侑¹、塩田陽一¹、小野輝男¹、森山貴広¹

ICR, Kyoto Univ.¹, ^oYuta Kobayashi¹, Tetsuya Ikebuchi¹, Hiroyuki Iwaki¹, Yoichi Shiota¹,

Teruo Ono¹, Takahiro Moriyama¹

E-mail: kobayashi.yuta.62n@st.kyoto-u.ac.jp

Spin Hall effect (SHE) is a convenient phenomenon which converts electric currents into spin currents. SHE is considered an effective spin current source and is often used in combination with magnetic materials to manipulate their spins. Recently, it has been shown that SHE in chiral antiferromagnet DO₁₉-Mn₃Sn has different characteristics from that in typical non-magnetic spin Hall materials [1], such as Pt and Ta, which originates from the chiral magnetic structure in conjunction with the non-zero anomalous Hall effect [2]. In this work, we fabricated antiferromagnetic L1₂-Mn₃Ir thin films having a chiral magnetic structure and investigated the spin transport properties as well as the spin Hall effect.

Multilayers of Mn₃Ir 30nm/Ti 1nm/Py 5nm/SiO₂ 5nm were deposited on a MgO (001) substrate by magnetron sputtering with various substrate temperatures T_s . Crystal ordering and orientation of the Mn₃Ir were characterized by X-ray diffraction (XRD). As shown in Fig. 1 (a), the (001) and (003) superlattice peaks evidence that the L1₂-ordered Mn₃Ir is formed at $T_s \ge 700^{\circ}$ C. These L1₂-Mn₃Ir showed anomalous Hall conductivity as much as 40 Ω^{-1} cm⁻¹ [3]. The spin Hall effect was characterized by the spin torque ferromagnetic resonance (ST-FMR) measurement. In the presentation, we will report the comparisons of the spin Hall angles for the disordered Mn₃Ir and L1₂-Mn₃Ir, and their correlation to the anomalous Hall conductivities.

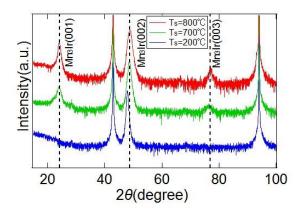


Fig. 1 The XRD pattern for MgO(001)/Mn₃Ir/Ti/Py/SiO₂ films

[1] M. Kimata, et al., Nature, 565, 627 (2019).

- [2] S. Nakatsuji, et al., Nature, 527, 212 (2015).
- [3] H. Iwaki, et al., Appl. Phys. Lett., accepted.