Evaluation of doping concentration of MoS2 via Schottky diode for the Terman method

[°]Xiao-Xuan Zhang¹, Kasidit Toprasertpong¹, Shinichi Takagi¹, Mitsuru Takenaka¹ (1.Univ. Tokyo) E-mail: zhangxx@mosfet.t.u-tokyo.ac.jp

[Introduction] Layered Molybdenum disulfide (MoS₂) is being studied intensively as a candidate for use in future scaled transistors because of its semiconducting properties with a sizable bandgap and relatively high carrier mobility[1]. However, it is essential to understand a property of MoS₂ metal-oxidesemiconductor (MOS) interface in particular for MOS transistors. In our previous study, the Terman method has been adopted to evaluate the density of interface traps (Dit) by fabricating thick-body MoS₂ MOS capacitors [2]. However, the unknown doping concentration (N_d) of MoS₂ made the D_{it} analysis inaccurate. Therefore, in this study, in order to figure out the doping concentration of natural MoS₂ crystal, we propose to use a thick-body MoS₂ Schottky diode. Owing to the thick-body MoS₂, we can use the regular C-V measurement to extract the doping concentration. Using the extracted doping concentration, the Terman method is applied to extract the energy distribution of D_{it} of MoS₂ MOS interface.

[Device structure] A schematic of thick-body MoS_2 Schottky diode is shown in an inset of Fig. 1. After precleaning of highly doped n-type Si, flakes of MoS_2 were transferred onto the surface of the wafer by exfoliation. Then, Au or Al was deposited on the MoS_2 flakes through shadow mask, which confines circle areas with a diameter of 200 µm. Finally, Al was

Fig.1 I-V characteristic of the MoS₂/Al Schottky diode.

evaporated onto the back side of Si wafer to offer a better conduction. First, we made an Au/MoS₂/n⁺-Si/Al diode to find out the ohmic contact between MoS_2/n^+ -Si. Then, we substituted Au with Al to achieve a Schottky contact between Al and MoS₂.

[Result and discussion] Fig. 1 shows the I-V characteristic of the fabricated Schottky diode. It exhibits typical n-type semiconducting property of MoS₂. From the $1/C^2$ -V curve, N_d of MoS₂ is extracted to be 4×10^{16} cm⁻³. With this experimental N_d value, we can estimate the D_{it} of MoS₂ using the Terman method. Fig. 2 shows the comparison of measured and ideal C-V curves of a MoS₂/Al₂O₃ MOS capacitor. Due to the existence of interface traps on the MoS₂/Al₂O₃ interface, the measured C-V curve stretches out with gate voltage. By comparing the measured and ideal C-V curve, we successfully extract more accurate D_{it} distribution.

[References]

- B. Radisavljevic et al. *Nat. Nanotechnol.*, vol. 6, no.
 3, pp. 147–50, Mar. 2011.
- [2] M. Takenaka et al., "Quantitative evaluation of energy distribution of interface trap density at MoS₂ MOS interfaces by the Terman method," *International Electron Devices Meeting* (*IEDM'16*), 5.8, San Francisco, 5 December 2016.

Fig. 2 Ideal and measured C-V characteristics of a $MoS_2 MOS$ capacitor.