Alterations of magnetic and magneto-transport properties of Mn₄N thin films by Co substitution

H. Mitarai¹, T. Hirose¹, T. Komori¹, K. Toko¹, and T. Suemasu¹

1. Inst. of Appl. Phys., Univ. of Tsukuba, Japan

E-mail: s1611064@u.tsukuba.ac.jp

[Introduction]

Mn₄N thin film is a notable rare-earth free material which has the advantage of sharp magnetization reversal because of its PMA ($K_u \sim$ 1.1×10^5 J/m³) and a small $M_{\rm S}$ (= 7.1×10^4 A/m).^[1] Previous study on 1–2 µm wide Mn₄N strips showed the fastest spin transfer torquedriven domain wall motion ($v_{DW} \simeq 900$ m/s at 1.2 $\times 10^{12}$ A/m² at RT.^[1] In order to achieve faster v_{DW}, Mn₄N based mixed crystal nitrides have been studied in pursuit of a compensation point. Recently, Mn_{4-x}Ni_xN thin films have been suggested to have a magnetic compensation point between x = 0.1 and 0.25 at RT.^[2] Mn₄₋ $_{x}Co_{x}N$ thin films are also considered to have a compensation point;[3] however, their magnetotransport properties and magnetic structure have yet to be made clear. In this work, we formed $Mn_{4-x}Co_xN$ epitaxial films to investigate them for various Co compositions x.

[Experiment]

20–30 nm-thick $Mn_{4-x}Co_xN$ films with x = 0-1.2 were epitaxially grown on SrTiO₃(001) substrate by molecular beam epitaxy. SiO₂ or Ta capping layers were sputtered *in-situ* on the surface to prevent oxidation. Co composition x dependence of M_S was evaluated by a vibrating sample magnetometer. Anomalous Hall effect (AHE) measurement was performed to obtain ρ_{AHE} curves for various Co compositions.

[Result and discussion]

Figure 1 shows the x dependences of M_S in $Mn_{4-x}Co_xN$ films. The M_S decreased almost linearly with x and reached a minimum M_S of 13.7 kA/m at x = 1.0. Even at this point, PMA was observable although Co_4N is known as an in-plane magnetic anisotropy material. For x > 1.0, the M_S started to increase.

Figure 2 exhibits the AHE hysteresis loops acquired for various x under the magnetic field

applied normal to sample surface. We observed the sign reversal between x = 1.1 and 1.2. These results suggest that the magnetic compensation point is between these points. In the presentation, we'd like to also discuss their magnetic structures based on the results obtained from XMCD measurements.

Fig. 1 Co composition x dependence of $M_{\rm S}$ in Mn_{4-x}Co_xN films at RT.

Fig. 2 AHE hysteresis loops of $Mn_{4-x}Co_xN$ films at RT.

[References]

[1] T. Gushi *et al.*, Nano Lett., **19**, 8716 (2019).
[2] T. Komori *et al.*, J. Appl. Phys., **125**, 213902

(2019).

[3] K. Ito *et al.*, AIP Adv., **6**, 056201 (2016).