LiTaO₃の電気光学係数の波長分散-1個の計測値から分散曲線を得る方法-

Wavelength dispersion of electro-optic coefficients in LiTaO₃: method of finding dispersion curve from one measurement value 成蹊大学 理工学部

油澤 國治

Seikei University, Faculty of Science and Technology Kuniharu Takizawa

E-mail: takizawakuniharu@gmail.com

- 1. **\underline{s}えがき** 前回、LiNbO $_3$ (LN)の低周波の 1 次電気光学(EO)係数 $r_{ij}^{\ T}$ の分散から、 高周波の 1 次 EO 係数 $r_{ij}^{\ S}$ および低周波と高周波の 2 次 EO 係数 $g_{ijkl}^{\ T(S)}$ の分散を求めた。[1] 今回、これらのデータと LiTaO $_3$ (LT)の 1 個の測定値 $r_{ij}^{\ T}$ から、可視光から近赤外光領域にわたり LT の $r_{ij}^{\ T(S)}$ の分散を求めたので報告する。
- 2. <u>原理</u> 点群 3m, 4mm, mm2 に属する強誘電性結晶の EO 効果は、分子内の酸素 8 面体構造 BO₆ に支配され、1 次 と 2 次の EO 効果の間には、次の関係が成立する。[2]

 $r_{ijl} = 2g_{ij3l}\chi_l P_3/\xi^3$ (1) ここで χ_l は誘電感受率、 P_3 は自発分極、 ξ はパッキング密度[2]である。 g_{ij3l} は BO_6 構造の 2次 EO 係数の和 $\sum g'_{ij3l}$ で構成される。上記 3 点群の g'_{ij3l} はほぼ同一であるから、 χ_l , P_3 , ξ が既知であれば、EO 係数の分散を導出できるはずである。しかし、表 1 に示すように、EO の EO 係数の測定値と式(1)から求めた

そこで、式(2),(3)に示すように、式(1) を波長に依存しないバイアス成分 a_{kl} と依存するカー係数 $g_{ij3l}(\lambda)$ に分離した。

計算値は大きく乖離した。

Table 1 Measured and calculated EO coefficients in LiTaO₃ at $\lambda = 632.8$ nm

		measured (pm/V)						calculated (pm/V)
r_{13}	T				8.4	7.16	7.62	10.2
	S	7	7.9	7.5				11.1
r_{33}	T				30.5	29.6	30.5	33
	S	30.3	35.8	33				39.4
r_{51}	T							14.3
	S		20					19.6
		[3]	[4]	[5]	[6]	[7]	[8]	

 $a_{kl} = 2\chi_l P_3 / \xi^3 \qquad (2) \qquad r_{ijl}(\lambda) = a_{kl} g_{ij3l}(\lambda) \qquad (3)$

ある波長 λ_0 における LT の測定値 r_{ij}^T (λ_0)と LN の $g_{ij3l}(\lambda_0)$ から、 a_{ijl} が定まるから、式(3)から LT の 1 次 EO 係数 の分散を求めることが出来る。結果を Fig. 1 に示す。 \diamondsuit と \triangle は、Casson ら [8] の測定値である。 \bigcirc と実線は Casson の測定値(λ_0 =632.8 nm)から求めた a_{kl} と LiNbLO $_3$ のカー係数 $g_{ij3l}(\lambda)$ から導出した分散曲線であり、曲線と測定値の平均差は、 r_{13} で 2.5%、 r_{33} で 1.7%であった。

[文献][1] 滝澤, 応物春季講演会,12p-M116-11,12 (2019).

- [2] M. Didomenico, Jr. and S. H. Wemple, J. Appl. Phys. 40, (1969) 720-734.
- [3] P. V. Lenzo, E. H. Turner, E. G. Spenser, and A.A. Ballman, Appl. Phys. Lett. **8**, (1966) 81-82.
- [4] I. P. Kaminow, and E. H. Turner, Appl. Opt. **5**, (1966) 1612-1628.
- [5]R. D. Standley, and G. D. Mandeville, Appl. Opt. **10**, (1971) 1022-1023.
- [6] K. Onuki, abd T. Saku, J. Opt. Soc. Am. 62 (1972) 1030-1032.
- [7] K. Takizawa, and K. Okada, J. Opt. Soc. Am. **72** (1982) 809-811.
- [8]J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander; J. Opt. Soc. Am. B/ 21, (2004) 1948-1952.

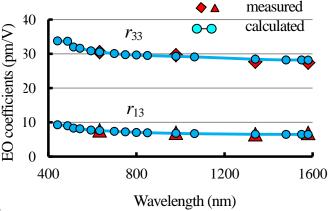


Fig. 1 Wavelength dependence of EO coefficients of LiTaO₃