Growth mechanism and ferroelectric domain structure study on epitaxial BiFeO₃ film grown on (La_{0.3}Sr_{0.7})(Al_{0.65}Ta_{0.35})O₃

¹SSIPC, ²Dep. Phys., Stat. Univ. NY at Binghamton, ³Lab. Mat. Stru., TIT, ⁴IMR, ⁶CIES, ⁷CSRN,

⁸CSIS Tohoku Univ.

In-Tae Bae^{1,2}, Shintaro Yasui³, Tomohiro Ichinose⁴, Mitsuru Itoh³, Takahisa Shiraishi⁴, Takanori Kiguchi⁴, °Hiroshi Naganuma*⁵⁻⁸ E-mail: hiroshi.naganuma.c3@tohoku.ac.jp

BiFeO₃ (BFO) film is epitaxially grown on the $(La_{0.3}Sr_{0.7})(Al_{0.65}Ta_{0.35})O_3$ (LSAT) substrates to investigate lattice mismatch effect on domain structure and lattice strain status within the BFO film. Atomic resolution scanning transmission electron microscope image, [Fig. 1(a)] selected area electron diffraction (SAED) pattern, and X-ray reciprocal space mapping (XRSM) clearly reveal that the lattice strain originating from the lattice mismatch between BFO and LSAT is relaxed by causing misfit dislocations in BFO film. [Fig. 1(a)] The SAED and XRSM data indicate crystal structure of BFO film is rhombohedral with space group of *R3c* assigned rhombohedral specific diffraction spots. [1] In particular, XRSM acquired along two different in-plane orientations reveal that BFO layer consists of two different domains that were 90° off each other around surface normal orientation. Atomistic model based on the orientation relation found by SAED and XRSM shows the domain structure is consistent with so called 71° ferroelectric domain reported previously. [Fig. 1(b)] The lattice mismatch of ~2.8% calculated based on the epitaxial relation is proposed to be too large to be stored as elastic strain within BFO layer.

Figure 1(a) A cross-sectional HAADF-STEM image at the BFO/LSAT interface along [011]_{LSAT} zone axis, (b) (a) An atomistic model that shows ferroelectric orientation relation.

References: [1] I.-T. Bae & H. Naganuma, APEX 8, 031501 (2015).