二周波駆動低圧 Ar/CH4プラズマにおける 基板へ入射するイオンおよびラジカルフラックスの解析

Numerical Analysis of Incident Ion and Radical Fluxes onto Substrate

in Dual-Frequency Low-Pressure Ar/CH₄ Plasma

千葉工業大学¹,名城大学²,岐阜大学³

^{~(MIC)}木村 勇太¹, 小川 慎¹, 小嶋 正宏¹, 小田 昭紀¹, 太田 貴之², 上坂 裕之³

Chiba Institute of Technology¹, Meijo University², Gifu University³,

^o(M1C)Y. Kimura¹, S. Ogawa¹, M. Kojima¹, A. Oda¹, T. Ohta², H. Kousaka³

E-mail: s1522093gr@s.chibakoudai.jp

1. 背景

ダイヤモンドライクカーボン(Diamond-Like Carbon, 以下 DLC) 膜は, 膜中の水素含有率や sp² および sp³構 造比によって幅広い特性を得ることから、薄膜技術と して応用されている. DLC の成膜手法の一つとして, プラズマ支援化学気相成長法が大面積かつ均一に処理 できることから多く用いられているが、その堆積メカ ニズムには未解明な部分が多く、膜の特性を制御する までには至っていない. この DLC の堆積メカニズムの 解明には、基板に入射する粒子種や基板への入射フラ ックス量などの情報が重要である.また、高エネルギ ーの炭素イオンが基板に入射することで sp³構造が増 加すると報告されており印,炭化水素イオンの基板入 射時のエネルギーも重要なパラメータの一つである.

基板への入射フラックス量は成膜速度に寄与し,基 板入射時のエネルギーは硬度に寄与するが、これら2 つのパラメータを単一の電源で独立して制御すること はできない.しかし、高周波と低周波の二種類の電圧 波形を用いることで,入射フラックス量とエネルギー を独立して制御し成膜を行うことができる^[2]. そこで, 本研究は二周波駆動 Ar/CH4 容量結合型プラズマの空 間一次元モデルを構築し,印加電圧波形がプラズマ中 の粒子組成や基板への入射フラックスに及ぼす影響に ついて解析を行ったので報告する.

解析手法 2.

本研究では、プラズマ中の粒子の挙動を流体とみな し,空間一次元モデルを構築した.電極半径6cm,ギ ャップ長3 cm とした. 電極間には Fig. 1 に示すよう な二周波電圧波形(高周波(HF): 100-150 V, 122.04 MHz, 低周波(LF): 50-200 V, 13.56 MHz) を印加した. その 際, Ar/CH4(1%)の混合ガスを全ガス流量 100 sccm で 流入し、全ガス圧力を13 Pa一定となるように排気を 考慮した.本モデルでは、荷電粒子 12 種類、励起粒 子1種類、ラジカル5種類、非ラジカル7種類から なる計 152 種類の反応過程を考慮し解析を行った.

結果および考察

Fig. 2(a)および(b)に,低周波側印加電圧を100 V-定時におけるイオン種とラジカル種の基板への入射フ ラックスの高周波側印加電圧依存性を示す. Fig. 2 (a) より、高周波電圧の上昇に伴いプラズマ密度が上昇し たため,入射フラックスは増加傾向となった. Fig. 2(b) より、入射量の多い CH₂, H は 10¹⁴-10¹⁵ cm⁻²s⁻¹ オーダ ーで75Vにかけて急激に増加し、その後飽和した.次 に入射量の多い CH3 はほぼ一定であり, CH4 の解離 による生成と重合反応による消滅が釣り合うためと考 えられる.その他結果については講演当日に報告する.

Fig. 2 HF-side applied voltage dependence of incident hydrocarbon (a) ion and (b) radical fluxes onto substrate

÷	4志
-	一一一円八

4 J. Robertson, Mat. Sci. Eng. Vol. 37, pp. 128-281 (2002)

[2] H. Sugiura et al., Journal of Carbon Research, Vol. 5, (12 pages) (2019)