4H-SiC/SiO₂界面での酸化反応におけるウェット酸化種の影響に関する理論的検討 Theoretical study for the effect of wet oxidants on the oxidation reactions at 4H-SiC/SiO₂ interface

三重大院工¹,島根大院理工²,慶応大理工³,名大未来研⁴

[°]清水紀志¹,秋山亨¹,アブダルムィッツプラディプト¹,中村浩次¹,伊藤智徳¹

影島博之², 植松真司³, 白石賢二⁴

Mie Univ.¹, Shimane Univ.², Keio Univ.³, Nagoya Univ.⁴

°Tsunashi Shimizu¹, Toru Akiyama¹, Abdul Muizz Pradipto¹, Kohji Nakamura¹, Tomonori Ito¹,

Hiroyuki Kageshima², Masashi Uematsu³, Kenji Shiraishi⁴

E-mail: 419M609@m.mie-u.ac.jp

[はじめに] SiC は熱酸化により SiO₂絶縁膜が得られ電子デバイスへ適用可能な材料であることから、ワイ ドギャップ半導体の中でも特に注目を集めている。しかしながら、SiC/SiO₂界面では大量の欠陥が形成す ることが知られており、SiC の熱酸化機構の解明が重要な課題となっている。これまでに我々は第一原理 計算に基づき、ドライおよびウェット酸化での 4H-SiC/SiO₂界面における反応過程を理論的に検討し、ド ライ酸化種(O₂)およびウェット酸化種(H₂O および OH)の反応に伴う酸化膜の構造変化およびその面方位 依存性を明らかにした [1,2]。一方、ドライおよびウェット酸化を同時に考慮することで界面の電気的特 性の制御が可能であることが近年報告されている[3,4]。本研究では、ドライおよびウェット酸化種が 4H-SiC/SiO₂界面上に共存している場合での界面構造の変化を明らかにし、ドライおよびウェット酸化との相 違点を検討する。

[結果および考察] Fig.1 は、第一原理計算によって得られ た C 面 4H-SiC/SiO₂界面における構造を示したものであ る。Fig.1(a)は酸化種である O₂ および H₂O 分子が界面上 に共存している状態であり、ともに SiO2とは反応せず分 子状態で準安定構造をとる。また Fig.1(b)-1(d)は、O2お よび H₂O 分子の反応後における構造を示したものであ る。Fig.1(b)は CO 分子が形成する構造であり、Fig1(c)お よび 1(d)は CO2 分子が形成する構造である。ドライ酸化 では界面において O2 分子が反応して CO 分子を形成す る[3]のに対し、H₂O 分子によって O₂ 分子の反応過程に おいて CO2分子の生成が促進されたと考えられる。また、 これらの構造変化における反応熱(反応過程でのエネル ギー利得)は、Fig.1(b)の構造では 6.9 eV となり、Fig.1(c) および 1(d)においてはどちらも 7.6 eV となり、発熱反応 であることが分かる。また、ドライおよびウェット酸化 による O₂および H₂Oの反応熱(それぞれ 4.56 および 2.07 eV)[1, 2]と比較して、高い値を示している。このことか ら、ドライおよびウェット酸化種が共存することにより H₂O 分子が O₂ 分子の界面上での反応を活性化すること が示唆される。講演では、ウェット酸化種として OH 基 を考慮した場合の酸化反応および Si 面における結果に ついても議論する。

Fig. 1. Perspective atomic geometries for the reaction of O_2 and H_2O molecules at C-face 4H-SiC/SiO₂ interface. The geometries of (a) O_2 and H_2O molecules in SiO₂ region, (b) 2Si-O-Si bonds at the interface, Si-O-CH₂-C bond and CO molecule in SiO₂ region, (c) Si-O-Si bond at the interface, Si-O-H, Si-C-H bonds and CO₂ molecule in SiO₂ region, (d) 2Si-O-Si bonds at the interface, Si-O-CH₂-C bond and CO₂ molecule in SiO₂ region, (d) 2Si-O-Si bonds at the interface, Si-O-CH₂-C bond and CO₂ molecule in SiO₂ region are shown. Blue, brown, red and pink circles denote Si, C, O and H atoms, respectively.

<u>[参考文献]</u>

[1] T. Akiyama, A. Ito, K. Nakamura, T. Ito, H. Kageshima, M. Uematsu and K. Shiraishi: Surf. Sci. 641, 135 (2015).
[2] T. Akiyama, S. Hori, K. Nakamura, T. Ito, H. Kageshima, M. Uematsu and K. Shiraishi: Jpn. J. Appl. Phys. 57, 04FR08 (2018).
[3] K. Kita, H. Hirai and K. Ishinoda: ECS Trans. 80 (7), 123 (2017).
[4] K. Kita, H. Hirai, H. Kajifusa, K. Kuroyama and K. Ishinoda: Microelectronic Eng. 178, 186 (2017).