高温アニールしたスパッタ AIN上に成長させた AINの陰極線蛍光評価(2)

CL studies of AlN films grown on high-temperature-annealed sputtered AlN (2)

東北大多元研¹, 三重大院工²・地域戦略³・地域イノベ⁴, 筑波大数物⁵ ⁰中須 大蔵¹, 嶋 紘平¹, 正直 花奈子², 上杉 謙次郎³, 小島 一信¹, 上殿 明良⁵, 三宅 秀人⁴, 秩父 重英¹

IMRAM-Tohoku Univ.¹, Mie Univ.^{2,3,4}, Univ. of Tsukuba⁵, °T. Nakasu¹, K. Shima¹, K. Shojiki²,

K. Uesugi³, K. Kojima¹, A. Uedono⁵, H. Miyake⁴, S. F. Chichibu¹

E-mail: nakasu@tohoku.ac.jp

AIGaN 混晶を活性層とする深紫外発光素子を安価で実現するには、サファイア基板上に高品質な AIN テンプレートを形成する技術が必要である。上杉、三宅ら[1]は、サファイア上に AIN 薄膜をスパッタ堆積させた後に face-to-face 高温アニールを施して AIN テンプレートとし、その上に AIN 膜を MOVPE 再成長させることによって低転位密度 AIN 薄膜を成長させられることを示している。一方我々は、サファイアや物理気相成長自立 AIN 基板上の AIN 薄膜のカソードルミネッセンス (CL) や時間分解発光計測を行ってきた[2-4]。本講演では、異なる条件で作製したスパッタ成膜・高温アニール AIN やその上に成長させた AIN 薄膜の CL 特性等について報告する。

サファイア(0001)面基板上に AIN を RF スパッタ成膜し、その後 1300-1700 $^{\circ}$ C で 3 時間の face-to-face アニールを施し AIN テンプレートとした。その上に成長温度(T_g)、V/III 比、成長速度を変化させ、膜厚約 1 μ m の AIN を MOVPE 成長させた。

スパッタ成膜・高温アニール AIN 上に T_g = 1100, 1150, 1200, 1300, 1340 $^{\circ}$ C で成長させた AIN 膜の、12 K におけるバンド端近傍の CL スペクトルを図 1 に示す。 T_g = 1100 $^{\circ}$ C の試料において、6.170, 6.131, 6.118, 6.102 eV に観測されるピークは、各々FXA(Γ_1) $_{n=2}$, FXA(Γ_1), FXA(Γ_5), Si $^{\circ}$ X (略号は[3,4]参照)と同定できる[3-5]。無歪 AIN の FXA(Γ_5) (6.027 eV [4]) に比べスパッタ膜上 AIN の FXA(Γ_5)のエネルギーは高く、 $\Delta a/a \approx -0.4$ %程度の圧縮歪を有しているためと考えられる。 T_g の上昇に従い FXA(Γ_1) $_{n=2}$ の発光強度は低下し、Si $^{\circ}$ X の強度は増加した。また、1300 $^{\circ}$ C から 1340 $^{\circ}$ C へ上昇させると Si $^{\circ}$ X の発光ピークの半値全幅が 2 倍に増大した。これらの結果から、用いた成長条件の範囲

内では高温成長の際に Si の取り込みが増加したと考えられる。講演では、これら AIN エピ層中の点欠陥や CL 特性の相関等についてまとめる。

菊地清助手に感謝します。本研究の一部はダイナミックアライアンス、科研費(新学術領域研究 16H06415, 16H06424, 16H06427, 基盤(B)17H02907) の援助を受けた。 [1] Uesugi *et al.*, APEX **12**, 065501 (2019). [2] Onuma, Chichibu *et al.*, JAP **105**, 023529 (2009). [3] Chichibu *et al.*, APL **103**, 142103 (2013). [4] Chichibu *et al.*, APL **115**, 151903 (2019). [5] Ishii *et al.*, Phys. Rev. B **87**, 161204(R) (2013).

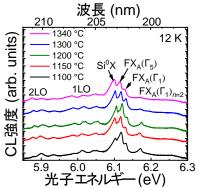


Fig. 1. CL spectra at 12 K of AlN epilayers grown on annealed sputtered-AlN.