Efficient Planar Perovskite Solar Cells by Using Oblique Electrostatic Inkjet-Deposited TiO₂ Electron Transport Layer

Kanazawa Univ.¹, Tokai Univ.², Waseda Univ.³

^o<u>M. Shahiduzzaman^{1,2*}</u>, K. Tomita², M. Isomura², T. Taima¹, S. Umezu,³ and S. Iwamori²

*E-mail: shahiduzzaman@se.kanazawa-u.ac.jp; umeshin@waseda.jp; is107522@tsc.u-tokai.ac.jp

In the design of electron transport layers (ETLs) to improve the performance of perovskite solar cells (PSCs), efficient electron extraction and transport are important aspects. Herein, we set up a simple and novel oblique electrostatic inkjet (OEI) technique, for the first time, to pattern titanium oxide (TiO₂) compact layer (CL) on fluorine-doped tin oxide (FTO)-substrate, without the required of vacuum environment and used as the ETL in PSCs¹. This bottom-up OEI technique solely enables for controlling the surface morphology and thickness of TiO₂ CL by simply manipulating the coating times. We test and compare with TiO₂ CL produced using the spin-coating and spray pyrolysis, OEI-deposited TiO₂ CL exhibit satisfactory surface coverage, and smooth morphology as ETLs in PSCs. The power-conversion efficiencies of PSCs with OEI-deposited TiO₂ CL as the ETL were as high as 13.19%. Thus, the present study provides an important advance in the aspects to the simple, low-cost and easy scale-up technique and can be a new TiO₂ CL ETL deposition candidate for highly efficient planar PSCs, which may contribute to the future mass production.

Acknowledgement: This study was supported in part by Research and Study Project of Tokai University General Research Organization.

Reference:

 M. Shahiduzzaman et al., Oblique Electrostatic Inkjet-Deposited TiO₂ Electron Transport Layers for Efficient Planar Perovskite Solar Cells, *Sci. Rep.*, 2019, 9, 19494.