反強誘電体 NaNbO₃-CaZrO₃ セラミックスへの MnO 添加効果 Effects of MnO Addition to Anti-Ferroelectric NaNbO₃ - CaZrO₃ Ceramics

湘南工大工¹ 0眞岩 宏司¹, 櫻井 篤司¹, 劉 禹唐¹

Shonan Inst. Tech.¹, ^oHiroshi Maiwa¹, Atsushi Sakurai¹, Yugeng Liu¹

E-mail: maiwa@mate.shonan-it.ac.jp

Recently, anti-ferroelectoic materials has been attracting attentions due to possible applications to new memory devices, energy storage devices, mechanical switches, and electric calorie materials. Anti-ferroelectric materials are anti-polar crystals consisting of two equally and opposing ferroelectric sublattice. Anti-ferroelectric materials exhibit double hysteresis loops. Each hysteresis loop represents the induced ferroelectric phase with polarization in the direction of one of the two sublattices. Antiferroelectric materials attention in high energy storage capacitor. By using proper AFE to ferroelectric (FE) transition, higher energy storage can be achieved. It is relatively difficult to prepare a sample that draws a double hysteresis loop of polarization. In the case of NbNbO₃ containing no additive, when a high electric field is applied at room temperature, a hysteresis loop like a ferroelectric properties of NaNbO₃ ceramics. In this work, antiferroelectric NaNbO₃ ceramics were fabricated by solid state reaction. Additive compounds of MnO were evaluated.

 $0.96NaNbO_3 - 0.04CaZrO_3$ ceramics were prepared by solid state reaction. The crystal structure, microstructure, and the dielectric and electromechanical properties are investigated. Lead free NaNbO_3-CaZrO_3 ceramics were fabricated. The addition of MnO improves the sinterability and dielectric properties. Superlattice peaks were observed from the 0.96NaNbO_3-0.04CaZrO_3 sintered at 1100-1350°C. Constrictions in P-E loops and rapid increases in S-E loops accompanying switching were observed in the 0.96NN and 0.04 CaZrO_3 plus 3mol% MnO sintered at 1250 °C.

Fig. 1. XRD patterns of 0.96NaNbO₃-0.04CaZrO₃ ceramics sintered at 1100-1350°C.

