Ba_{1/3}CoO₂エピタキシャル薄膜の熱電特性の温度依存性

Temperature Dependence of Thermoelectric Properties of Ba_{1/3}CoO₂ Epitaxial Films 北大院情報¹,北大電子研² ^O(M2)呉 礼奥¹,張 雨橋²,張 習²,ジョヘジュン²,太田裕道² IST-Hokkaido U.¹, RIES-Hokkaido U.², ^oL. Wu¹, Y. Zhang², X. Zhang², H.J. Cho², Hiromichi Ohta²

E-mail: go1reioku@gmail.com

Among many kinds of conducting oxides, layered cobalt oxides such as $Na_{3/4}CoO_2$ and $Ca_3Co_4O_9$ have been extensively studied as p-type thermoelectric materials. Based on our own hypothesis^[1] that the thermal conductivity of layered cobalt oxides can be reduced by the ion exchange treatment without suppressing the power factor, recently, we found that $Ba_{1/3}CoO_2$ shows rather high *ZT* of 0.11 at room temperature^[2]. Here we report the thermoelectric properties of $Ba_{1/3}CoO_2$ epitaxial films at elevated temperatures. Although rather high thermoelectric figure of merit, *ZT* (~1.2 at 800 K for Na_xCoO_2 single crystal^[3]) of layered cobalt oxides have been reported thus far, reliable *ZT* (~0.3 at 700 °C^[4]) is quite small as compared to that of chalcogenide such as PbTe. Such inconsistency is often seen in the literatures published in high impact factor journals^[5], probably due to the instability of conducting oxides at elevated temperatures. Therefore, we firstly studied the stability of $Ba_{1/3}CoO_2$ epitaxial films at elevated temperatures. Then, we measured the thermoelectric properties of the $Ba_{1/3}CoO_2$ epitaxial films at elevated temperatures.

 $Ba_{1/3}CoO_2$ epitaxial films were prepared as following. Firstly, $Na_{3/4}CoO_2$ epitaxial films were prepared by the R-SPE method^[6]. Then, Na^+ ions were exchanged with Ba^{2+} ions by the ion exchange treatment. Resistivity, thermopower, and thermal conductivity of the $Ba_{1/3}CoO_2$ epitaxial films were measured by dc four probe method, steady state method, and TDTR method, respectively.

We firstly measured the XRD patterns, resistivity, and thermopower of the Ba_{1/3}CoO₂ films at room temperature after the films were annealed at several temperatures in air. As the results, the limitation temperature of the Ba_{1/3}CoO₂ films was ~600 °C, which is higher than that of Na_{3/4}CoO₂ (~350 °C) (FIG.). Next, we measured the temperature dependence of resistivity, thermopower and thermal conductivity of the Ba_{1/3}CoO₂ films. Above room temperature, the power factor of the Ba_{1/3}CoO₂ films was almost constant (~1 mW m⁻¹ K⁻²), which is similar to Na_{3/4}CoO₂ films. Thermal conductivity of $Ba_{1/3}CoO_2$ films exhibited decreasing tendency from ~3 W m⁻¹ K^{-1} at room temperature to ~1.7 W m⁻¹ K⁻¹ at 300 °C. As the result, the ZT increased from ~0.11 at room temperature to ~0.33 at 300 °C. Unfortunately, we could not measure the thermal conductivity above 300 °C due to that oxidation of Mo transducer film occurs at high temperature in air. We would update the thermoelectric properties of Ba_{1/3}CoO₂ films by using appropriate metal transducer film in future.

- [1] H.J. Cho et al., Adv. Mater. Interfaces 7, 1901816 (2019).
- [2] Y. Takashima et al., J. Mater. Chem. A 9, 274 (2020).
- [3] eg. K. Fujita et al., Jpn. J. Appl. Phys. 40, 4644 (2001).
- [4] H. Ohta et al., Inorg. Chem. 47, 8429 (2008).
- [5] eg. M. Acharya et al., Nano Energy 84, 105905 (2021).
- [6] H. Ohta et al., Cryst. Growth Des. 5, 25 (2005).

FIG. Changes in (a) the XRD patterns and (b) room temperature resistivities of $Ba_{1/3}CoO_2$ and $Na_{3/4}CoO_2$ epitaxial films after annealing at elevated temperatures.