低ガス圧ヘリウムプラズマに入射した水ジェットにおける

無電流酸化還元反応の可能性 II:水蒸気を起源とする反応との比較

Possibility of current-less redox reactions in water jet injected into low-pressure helium plasm II:

Comparison with reactions originated from water vapor

北大工¹, 京大工² °(M2)伊藤 健¹, 作花 哲夫², 佐々木 浩一¹

Hokkaido Univ.¹, Kyoto Univ.² °Takeshi Ito¹, Tetsuo Sakka², and Koichi Sasaki¹

E-mail: itoh.takeshi.m1@elms.hokudai.ac.jp

【はじめに】

近年、大気圧下で非平衡プラズマを生成する技術 が発展したことで、水などの液体にプラズマを直接 照射できるようになり、プラズマと液体の相互作用 はプラズマ科学技術の分野でますます重要なテーマ になっている。しかし、大気圧プラズマは制御性に 劣り、プラズマパラメータの測定が難しいという問 題があり、プラズマ・液体相互作用の基礎研究を難 しくしているのが現状である。

我々は、プラズマ・液体相互作用の新しい研究プ ラットフォームとして、低ガス圧プラズマに水ジェ ットを導入する実験装置を開発した。この装置を用 いた初期実験として、ヘリウムプラズマに水ジェッ トを導入したときの気相の中性粒子の組成を分析し たところ、水素分子と酸素分子の生成を確認した。 本講演では、これらの生成した分子がプラズマと水 の気液界面における酸化還元反応由来である可能性 について議論する。

【実験方法】

真空容器外部に置いた高周波アンテナに周波数 13.56 MHz の高周波電力を供給し、真空容器内に誘 導結合ヘリウムプラズマを生成した。ヘリウムの分 圧は 10 mTorr とした。直径 50 μm のノズルに高圧水 を印加する方法によって液体水ジェットを発生させ、 プラズマ中に入射した。水ジェットの電位はほぼフ ローティングの状態にある。真空容器内に液体窒素 温度に冷却したトラップを設置し、プラズマを通過 した水を凍らせて真空中に保持することと、大排気 速度(2000 L/s)のターボ分子ポンプを用いることに より、プラズマ中の水蒸気分圧を約 2.0 mTorr まで低 下させた。差動排気した別の真空容器にプラズマ中 のガスをサンプリングし、四重極質量分析器を用い て分析した。このとき、スキマー部を接地した金属 で覆うことにより、プラズマ中のイオンが四重極質 量分析器に届くことを阻止した。また、真空容器に 接続した小型容器に水を満たし、そこから発生する 水蒸気の真空容器内における分圧が水ジェットから 発生する水蒸気の分圧と等しい条件で同じ測定を行 い、反応生成物の生成速度を比較した。

【実験結果および考察】

水ジェット雰囲気下と水蒸気のみが存在する雰囲 気下において、高周波電力を変化させてプラズマ密

度を制御し、気相のガス組成の変化を調べた。図1 は、四重極質量分析器の感度の較正に基づき、真空 容器内における水素分子と酸素分子の生成レートを 求めた結果で、水ジェット雰囲気下と水蒸気のみが 存在する雰囲気下を比較している。水素分子の生成 レートは水ジェット雰囲気の方が高く、その違いは 高周波電力に対して増加した。一方、酸素分子の生 成レートの違いはほぼ見られなかった。水蒸気雰囲 気では、プラズマの生成によって水蒸気密度の低下 がみられ、水素分子および酸素分子の生成レートは 水蒸気の損失レートよりも小さかった。一方、水ジ エット雰囲気では、プラズマの生成によって水蒸気 密度の増加がみられた。プラズマを生成すると水ノ ズルの温度が数度増加したが、水蒸気密度の増加量 は水温がノズルと同様に加熱されたと仮定した場合 の蒸気圧の増加量とほぼ一致した。即ち、この場合 の水素分子および酸素分子の生成レートは気相にお ける水蒸気の損失レートよりも有意に大きいものと みられる。気相の水蒸気がプラズマ中で解離し、真 空容器の壁面に輸送されて反応することが、水素分 子および酸素分子の生成過程の一つであると考えら れ、水蒸気雰囲気における実験結果はこの過程で説 明可能である。それに対し、水ジェット雰囲気での 実験結果は水蒸気起源の反応では説明できず、水ジ エット表面での無電流酸化還元反応による水素分子 と酸素分子の生成を示唆する。

本研究は科研費基盤研究 A (20H00135)のサポート を受けている。

Fig.1 Production rates of H₂ and O₂.