Highly pure monoclinic beta molybdenum trioxide synthesized by a mini furnace device utilizing a vapor rapid cooling mechanism

Ngo Minh Chu*, Nguyen Duy Hieu, Thi Mai Dung Do, Tadachika Nakayama,

Koichi Niihara, and Hisayuki Suematsu

Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

*E-mail: ngominhchu@stn.nagaokaut.ac.jp

 β -MoO₃ is a low temperature phase of MoO₃, which has many applications in electronics, optical devices, gas sensors, semiconductors, and nuclear medicine ^{[1,} 2]. From our previous research, β -MoO₃ was synthesized by pulsed wire discharge (PWD)^[3]. However, β -MoO₃ synthesized from the PWD method still had some impurity of Mo and α -MoO₃. Therefore, in this report, by utilizing the β -MoO₃ formation mechanism of rapid cooling vapor in PWD, we have made a mini furnace, much smaller than a regular tube furnace, with a higher temperature gradient than that of conventional furnaces. α-MoO₃ powder (99.9% purity) from Nilaco Co., Ltd was evaporated in the mini furnace at different temperatures (T_f) from 750 to 1000 °C under the oxygen gas flow. Samples were collected by micro membrane filters at a position with a temperature of about 60 °C and were characterized by X-ray diffraction in Fig. 1. From these results, high purity β -MoO₃ powder were obtained at temperatures above 800 °C. Comparing with β -MoO₃ made by PWD, peaks of α -MoO₃ at 27.3° was disappeared. At 750 °C, which is the temperature where MoO₃ starts to evaporate. From temperature distribution results inside the tube in Fig. 2, the temperature gradually decreased from inner to outer of the tube. The temperature gradient increased with the increase in $T_{\rm f}$, which might make the purity of β -MoO₃ high at higher $T_{\rm f}$.

Fig.1. XRD results of β -MoO₃ by PWD, and by mini furnace at different T_f

Fig. 2. The temperature distribution inside the tube at different $T_{\rm f}$ values

From these results, the mass production of β -MoO₃ powders for promising applications can be obtained by utilizing the mini furnace system.

References

- 1. E. M. McCarron, J. Chem. Soc., Chem. Commun. (4), 336 (1986).
- 2. Y. Zhao, et al. J. Phys. Condens. Matter. 15(35) (2003) L547-L552.
- 3. N. M. Chu, et al. Jpn. J. Appl. Phys. 2019;59(SC):SCCC02.