異方性磁気ペルチェ効果による吸発熱応答の機械的スイッチング Mechanical cooling-heating switching of anisotropic magneto-Peltier effect 物材機構¹, 東大物工², 阪大産研³, 阪大 CSRN⁴, 東北大 CSRN⁵, 東北大金研⁶, O平井 孝昌¹, セペリアミン ホセイン¹, 長谷川 顕登^{2,3}, 小山 知弘^{3,4}, 井口 亮¹, 大久保 忠勝¹, 千葉 大地^{3,4}, 内田 健一^{1,5,6} NIMS¹, The Univ. of Tokyo², SANKEN, Osaka Univ.³, CSRN, Osaka Univ.⁴, CSRN, Tohoku Univ.⁵, IMR, Tohoku Univ.⁶ OTakamasa Hirai¹, Hossein Sepehri-Amin¹, Kento Hasegawa^{2,3}, Tomohiro Koyama^{3,4}, Ryo Iguchi¹, Tadakatsu Ohkubo¹, Daichi Chiba^{3,4}, and Ken-ichi Uchida^{1,5,6}, E-mail:HIRAI.Takamasa@nims.go.jp The development of spin caloritronics opened up a new area of the thermal energy conversion, where the spin degree of freedom provides unique functionalities for thermoelectric/thermospin conversion which cannot be realized if only the conventional Seebeck and Peltier effects are used [1]. Towards future sustainable green information technologies, it is crucial to establish active heat control principles and improve the thermoelectric/thermospin conversion efficiency. In this presentation, we mainly talk about the demonstration of the active switching of local cooling and heating generated by the anisotropic magneto-Peltier effect (AMPE) [2], one of the thermoelectric effects in magnetic materials, by applying a uniaxial tensile strain to a Ni film (Fig. 1(a)) [3]. We will also show our recent progress of the study on the enhancement of the anisotropic magneto-Seebeck effect, the Onsager reciprocal of AMPE, by doping of Ni with Pt having the strong spin-orbit interaction (Fig. 1(b)) [4]. This work was supported by JST CREST (No. JPMJCR1711) and JSPS KAKENHI (Nos. 19H00860 and 20J00365). [1] G. E. W. Bauer et al., Nat. Mater. 11, 391 (2012). [2] K. Uchida et al., Nature 558, 95 (2018). [3] T. Hirai et al., Appl. Phys. Lett. 118, 022403 (2021). [4] T. Hirai et al., Appl. Phys. Express 14, 073001 (2021). Fig. 1. (a) Demonstration of uniaxial-strain-induced cooling-heating switching of the AMPE in the Ni film by means of lock-in thermography (LIT) method. \mathbf{H} and \mathbf{J}_C denote the magnetic field and charge current, respectively. (b) Temperature dependence of dimensionless figure of merit for the thermoelectric conversion based on the anisotropic magneto-Seebeck effect for the Ni and NiPt alloys.