HVPE 成長 GaN 層中の電子トラップ濃度の大幅低減

Marked reduction of electron trap concentrations in HVPE-grown GaN layers

(株)サイオクス ^〇木村 健司, 今野 泰一郎, 金木 奨太, 藤倉 序章

SCIOCS, Co. Ltd. °Takehshi Kimura, Taiichiro Konno, Shota Kaneki, Hajime Fujikura

E-mail: takeshi-kimura2@ya.sumitomo-chem.co.jp

序論: これまで、石英フリー化した HVPE を用いることで、MOCVD 製 GaN よりも遥かに残留 不純物濃度が低い([Si], [O] $\leq 5 \times 10^{14}$ /cm³, [C] $\leq 1 \times 10^{15}$ /cm³)高純度 GaN 層の高速成長が可能で あることを示してきた。しかし、HVPE 成長 GaN 層中には依然として MOCVD 成長 GaN と同程 度の 10¹³ ~ 10¹⁴/cm³ 台の濃度の電子トラップが存在し、その低減が課題であった^[1]。今回、成長 条件および HVPE 装置構成の変更により、これらの密度を大幅に低減したので報告する。

実験: 成長条件および成長装置構成を様々に変え、HVPE 法により n-GaN 単結晶基板上に n-GaN 層を約 30 µm 成長した。HVPE 成長 GaN 層中の不純物濃度を SIMS により、また電子トラップ濃度を 80 – 300 K での ICTS 法により測定した。

結果: 種々の HVPE 条件・構成の変更の中で、HVPE 装置の上流端のステンレス製フランジの加熱が抑制される場合に、GaN 結晶中の電子トラップ濃度が減少することが判明した。最良の場合には、従来観測されていた電子トラップ E1(Ec -0.22 eV), E3(Ec -0.60 eV)および Ex(Ec -0.71 eV)の濃度が 1/10 以下に低減した。Fig.1 に E3 および Ex 準位の ICTS 測定例を示す。今回の改善により、どちらの電子トラップの濃度も大幅に低減している。Fig.2 に C 濃度と E3 濃度の関係を、従来 HVPE および今回改善した HVPE 法による GaN 層と、MOCVD 法による GaN 層についてまとめた。Fig.2 に示す様に、MOCVD 法では、GaN 中の C 濃度と E3 濃度にトレードオフが存在し、両者を同時に低減するのは困難なことが知られている^[2]。これに対して、本研究の HVPE 製 GaNでは、そのようなトレードオフは解消され、MOCVD 法での限界以下に、C と E3 濃度を低減できた。E3 トラップは Fe 起源とされていることから、ステンレス・フランジのエッチング抑制により GaN 層中への Fe の混入が抑制された結果、E3 濃度が低減されたものと解釈される。また、E1 および Ex トラップも E3 トラップと同時に大幅に減少した。このことは、これらのトラップが従来言われてきた点欠陥ではなく、ステンレス由来の不純物起因である可能性を示唆している。

K. Kanegae et al., Appl. Phys. Lett. 115, (2019), 012103.
Narita et al., Jpn. J. Appl. Phys. 59, (2020), 105505.