GaAs_xSb_{1-x}/GaAs 量子ドットのキャリア寿命の As 組成依存性

As composition dependence of carrier lifetime in GaAs_xSb_{1-x}/GaAs quantum dots

1 東大院工,2 東大先端研,3 産総研

[○]樗木 悠亮 ^{1,2,3},庄司 靖 ³,宮下 直也 ²,岡田 至崇 ^{1,2}

1 School of Engineering, Univ. of Tokyo, 2 RCAST, Univ. of Tokyo, 3 AIST

°Yusuke Oteki^{1,2,3}, Yasushi Shoji³, Naoya Miyashita², Yoshitaka Okada^{1,2}

E-mail: oteki@mbe.rcast.u-tokyo.ac.jp

【はじめに】量子ドット太陽電池は量子準位を介した 2 段階光吸収過程による電流密度の増大により、変換効率の向上が期待される。2 段階光吸収レートを改善するために、キャリア寿命が長い Type-II 型 GaSb 量子ナノ構造を用いることが有効であると考えられる[1]。 我々は太陽光と量子準位のスペクトルマッチングをとるため $GaAs_xSb_{1-x}/GaAs$ 量子ドット(QDs)を検討している。今回、 $GaAs_xSb_{1-x}/GaAs$ QDs の As 組成の変化に対するキャリア寿命の変化について調べた。

【実験および結果】試料は分子線エピタキシーを用いて GaAs(001)基板上に成長した。まず 200 nm 厚の格子緩和 $GaAs_xSb_{1-x}$ 薄膜を作製した。Sb flux は 8×10^6 Pa で固定し、As flux を $0,1,3,4.5,6\times10^4$ Pa と変化させた。高分解 X 線回折により As 組成は 6%, 11%, 21%, 30%, 38% と見積もられた。

次に同 As/Sb flux 条件を用いて単層 QDs を成長し、 $150 \, \mathrm{nm}$ 厚の GaAs で埋込んだ。 $5 \, \mathrm{K}$ における各 GaAsSb QDs からの発光の時間分解スペクトルを測定し、 $2 \, \mathrm{成分}(\tau_1,\tau_2)$ の指数関数モデルを用い

てフィッティングを行った。Fig.1 に示すようにキャリア寿命 τ_1 , τ_2 は As 組成 20%程度の試料で最大となった。

Fig.1 の組成変化の要因を調べるため、nextnanoを用いて電子と正孔の波動関数の重なりからキャリア寿命の As 組成依存性を計算した結果[2][3]、QD 近傍の光キャリアの蓄積がない(キャリア密度 0 cm⁻³)ときは Fig.2 の青線のようにキャリア寿命は As 組成が大きくなるにつれて減少した。一方、光照射によるキャリアの蓄積を考慮してキャリア密度 1×10²⁵cm⁻³ を与えるとキャリア寿命は As 組成 17%前後で最大となり、実験結果と同様の傾向が得られた。

Type-II 型のバンド構造では、光照射により励起した 電子が QDs 近傍に局在化すると考えられている[3]。As 組成が大きくなると伝導帯オフセットが減少し、QDs 近 傍に局在する電子の波動関数分布が小さくなることで キャリア寿命が増大したと考えられる。

【謝辞】本研究は、国立研究開発法人 NEDO「壁面設置 太陽光発電システム技術開発」の委託の下で行われた。

- [1] Y. Shoji et al., AIP Advances 7 (2017) 065305.
- [2] C. W. Lee and A. J. Peter, Phys. Scr. 85 (2012) 015704.
- [3] nextnano³ semiconductor software solutions, https://www.nextnano.de/index.php (2021).
- [4] M. Jo et al., Nanoscale Res. Lett. 7, 654 (2012).

Fig.1. As composition dependence of carrier lifetime obtained in experiments.

Fig.2. As composition dependence of carrier lifetime calculated with carrier density 0 cm⁻³ (blue) and 1×10^{25} cm⁻³ (red) of QDs with a 4 nm-height, 10 nm-diameter, and 0.3 nm-wetting layer thickness. Insets show band diagrams of QDs with 20% As composition.