

ミスト CVD 法による 2D MoS₂, WS_{1-x}Se_x 粒径拡大の検討

Synthesis of 2D MoS₂ and WS_{1-x}Se_x thin films by Mist-CVD ¹埼玉大理工研, A. Kuddus^{1*}, A. Rajib¹, 木崎亮太郎¹, 横山工純¹, 上野啓司¹, 白井肇¹ *E-mail: kuddus4910@gmail.com

1.Introduction: We have studied the synthesis of 2D MoS₂ atomic layer thin films by mist CVD from ammonium tetrathiomolybdate (NH₄)₂MoS₄ using layer-by-layer (LbL) method. Previously, we presented (1) the number of stacking layers of MoS₂ flakes under the LbL mode was varied from atomic mono layer to 4– 5 layers by varying t₂, repetition cycles of precursor mist supply *N*, and solution precursors concentration. (2) The average size of atomic MoS₂ monolayer flakes deposited using LbL mode on *th*-SiO₂ and ATO dielectric layers increased to 20- 30 and 60-70 µm, respectively with relatively uniform size distribution. (3) Atomic MoS₂ monolayer-based FETs exhibited a mobility of 31- 40 (43- 55) cm²/Vs with a V_{th} of -1.6 (-0.5 V), an on/off ratio of 3.0×10^4 (3.5×10^5), and SS of 0.80 (0.11) V/dec. for *th*-SiO₂ (ATO) gate insulator layers without mechanical exfoliation [1]. In this study, we attempt to further increase in the crystalline grain size of MoS₂ flake and extend the fabrication of WS₂ based ternary alloy, WS_{1-x}Se_x thin layers by LbL method.

2.Experimental: $(NH_4)_2MoS_4$ and ammonium tetrathiotungstate $(NH_4)_2WS_4$ were used as a precursor of MoS₂ and WS₂ respectively and N-methyl-2-pyrrolidone (NMP) was solvent. MoS₂ and WS₂ films were synthesized by mist CVD with Ar gas containing H₂ (25%) at a T_f of 400- 600 °C on atmospheric pressure He plasma exposed *th*-SiO₂ and mist CVD grown Al_{1-x}Ti_xO_y (ATO) substrates for 30 s. Subsequently, the sulfurization (selenization) of MoS₂ (WS₂) was executed for further improving the quality of the flakes at T_f of 600 °C for 20 min.

3.Results and Discussion: Fig.1a shows the camera, optical microscope and AFM images of MoS₂ precursor solution on ATO before and after exposing He plasma. The contact angle decreased from 29° to 21° by plasma exposure on *th*-SiO₂ and ATO substrates, suggesting that the wettability of deposition precursors was promoted. The optical microscope and AFM images of MoS₂ layers grown by LbL modes on ATO substrate before and after exposing He plasma are shown at the bottom. The average flake size of MoS₂ increased to ~70 to >100 µm on ATO substrate. Figure 1b shows the PL mapping of the corresponding MoS₂ thin layers on ATO with plasma exposure. The average size of atomic MoS₂ monolayer flakes increased from ~95 µm (continuous) to ~110 µm (LbL) with better uniformity than the continuous mode. This is revealed by the AFM thickness profile and the color contract of the PL mapping of LbL MoS₂ flake (Fig. 1b), which shows the formation of atomic mono/bilayer MoS₂ throughout the substrate surface. We also extend the synthesis of binary alloy WS_{1-x}S_x and WSe₂ through the selenization of LbL grown WS₂. [1] A. Kuddus et al. ACS Appl. Nano Mater. 2021 (to be published).

Fig.1 (a) Camera, optical microscope and AFM images of mist CVD MoS₂ with He plasma exposure.(b) 2D map of PL of atomic MoS₂ monolayer film on plasma exposed ATO.