常圧 1400℃アニール処理した Mg/N イオン注入 GaN 結晶の アクセプタ活性化率の評価

Evaluation of acceptor activation rate of Mg/N-ion-implanted GaN annealed at 1400°C under normal pressure

大分大¹, ミライズテクノロジーズ² [○]大森 雅登¹, 渡邉 健太², 宮崎 泰成¹, 白石 舞翔¹, 和田 竜垂¹, 大川 峰司²

Oita Univ. ¹, MIRISE Technologies², ^oMasato Omori¹, Kenta Watanabe², Taisei Miyazaki¹, Maito Shiraishi¹, Ryusei Wada¹, Takashi Okawa²

E-mail: omori@oita-u.ac.jp

脱炭素社会に向けた省エネ化技術として窒化ガリウム(GaN)パワーデバイスの早期実現が期待されている。GaNへのイオン注入ドーピング技術は高性能・低コストなパワーデバイス実現のために必須の要素技術であるが,活性化アニールによって窒素が脱離してしまうため,結晶回復とドーパント活性化が容易ではなく実用化には至っていない。これを解決するために平衡蒸気圧以上の超高圧高温でアニールする方法[1]や,保護膜を製膜して常圧でアニールする方法などが試みられている。本研究では,AIN 保護膜を製膜した Mg イオン注入 GaN を常圧下 1400° Cでアニールした試料に対し,アクセプタ活性化率を評価したので報告する。

イオン注入試料は GaN-on-GaN エピウエハ上に約 400nm の Box プロファイルにて Mg と N を $1\times 10^{18} {\rm cm}^{-3}$ の濃度で共注入し作製した。その後 AlN をスパッタリング法により約 200nm 製膜し、大気圧にて 1400° Cで 15 分間アニールを行った。また、1GPa の圧力下にて 1456° Cで 15 分間アニールを行った試料も作製した。試料はフォトルミネッセンス(PL)法により作成した Mg 濃度検量線^[2]を用いて Mg_{Ga} アクセプタ濃度を見積もった。また走査型マイクロ波顕微鏡法(SMM)とホール効果測定を用いて正孔濃度の評価も行った。

各評価結果を TABLE I に示す。PL 測定から,常圧アニールおよび 1GPa アニール試料の Mg_{Ga} アクセプタ活性化率はそれぞれ 42%と 11%であった。正孔濃度はホール効果と SMM で大きな違いはなく,SMM で比較的正確に測定できていることが分かる。より高温の 1GPa アニールの試料の方が高い正孔濃度であるにもかかわらず Mg_{Ga} アクセプタの活性化率が低い結果となった。これは,1400°C以上の高温でアニールしたことで Mg_{Ga} アクセプタとは異なる欠陥関連のアクセプタが形成され,それが正孔を多数供給していると推察される。また,ホール効果測定による正孔濃度の温度依存性や PL 測定結果の解析を行ったところ,p型 GaN エピ膜とは異なる深いエネルギー準位を示すアクセプタが存在することが明らかとなった。

- [1] H. Sakurai et al., Appl. Phys. Lett. 115, 142104 (2019).
- [2] M. Omori et al., Appl. Phys. Express 14, 051002 (2021).

TABLE I. Experimental results of Mg/N ion-implanted GaN samples.

Sample	Annealing conditions		Mg	Mg _{Ga} acceptor	Hole concentrations at 300 K	
	Temp.	Pressure	by SIMS	by PL	SMM	Hall effect
			(cm ⁻³)	(cm ⁻³)	(cm ⁻³)	(cm ⁻³)
A	1400°C	100 kPa	1.27×10^{18}	5.27×10^{17}	2.10×10^{16}	-
В	1456°C	1 GPa	1.74×10^{18}	1.82×10^{17}	5.86×10^{16}	4.18×10 ¹⁶