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1. Introduction

Stimulated Raman scattering (SRS) spectroscopy is a
powerful tool of vibrational spectroscopy to analyze the
chemical structure of molecules. SRS has also enabled
vibrational imaging of cells and tissues [1]. However, the
sensitivity of traditional SRS spectroscopy is restricted by
the laser shot noise [2,3]. Quantum-enhanced SRS
(QE-SRS) has been reported to break this physical limit,
but previous reports suffered from low sensitivity due to
continuous-wave excitation [4] or low average power [4,5].
Here, we demonstrate QE-SRS spectroscopy with pulsed
excitation and QE-balanced detection [6], which is
advantageous for guantum enhancement in the moderate
power regime (>10 mW).

2. Experimental setup

Fig. 1 shows the experimental setup. A Ti:sapphire
laser provides picosecond SRS pump pulses. Squeezed
vacuum is generated via single-pass optical parametric
amplification in a periodically poled stoichiometric LiTaO3
(PPSLT) waveguide. A spatial light modulator is installed
for beam shaping of local oscillator light. A Yb fiber laser
system provides picosecond SRS Stokes pulses with
~30-nm wavelength tuning range for hyperspectral SRS
measurement. A homemade balanced photodetector is used
for QE-SRS signal detection.
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Fig. 1. Schematic of QE-SRS experimental setup. TiS: Ti:sapphire,
AOM: acousto-optic modulator, SLM: spatial light modulator,
SHG: second-harmonic generation, OPA: optical parametric
amplifier, DM: dichroic mirror, RFSA: RF spectrum analyzer.

3. Results and discussion

Fig. 2(a) shows the output of the balanced
photodetector without placing a sample. A squeezing level
of >3 dB was achieved. Fig. 2(b) shows the SRS spectra of
dimethyl sulfoxide-d6 (d-DMSOQ). With the assistance of
squeezed vacuum, >2-dB noise reduction was realized. The
squeezing level is presumably limited by the scattering loss
when passing through the sample contained in a cuvette.
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Fig. 2. (a) Squeezing result without placing SRS sample. (b) SRS
spectra with or without squeezed vacuum input. SNL:
shot-noise-limited, ASQ: anti-squeezed, SQ: squeezed.

4. Conclusions

In this report, we have demonstrated QE-SRS
spectroscopy  with  picosecond laser sources and
QE-balanced detection. The SRS sensitivity is improved by
2.06-dB below the shot-noise-limit. Currently, we are
preparing the imaging system to achieve ultrasensitive
QE-SRS microscopy. We believe our approach will enable
new possibilities in SRS imaging.
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