ドープ a-Si をキャリア輸送層とするペロブスカイト太陽電池 のシミュレーション

Simulation of Perovskite Solar Cells with doped a-Si as a Carrier Transport Layer

北陸先端大, ^O(M2) 劉 寛, Huynh Thi Cam Tu, 大平 圭介

JAIST, ^OKuan Liu, Huynh Thi Cam Tu, Keisuke Ohdaira

E-mail: s2010199@jaist.ac.jp

背景:メチルアンモニウムヨウ化鉛 (MAPbI₃) ペロブスカイト太陽電池は、 高変換効率、低コスト太陽電池として期待されており、Si 太陽電池とのタン デム化も検討されている。MAPbI₃太陽電池の発電性能は、使用するキャリア 輸送層に大きく依存する。しかし、従来の塗布によるキャリア輸送層形成は、 結晶 Si 太陽電池とのタンデム化には不向きであり、真空製膜可能な、新たな キャリア輸送層を探索する必要となる。これまで我々は、触媒化学気相堆積

(Cat-CVD)で堆積するドープ非晶質 Si (a-Si)膜を MAPbI₃太陽電 池のキャリア輸送層に使用する検討を行ってきた^[1]。今回我々 は、ドープ a-Si をキャリア輸送層に用い、シミュレーション した結果を報告する。

シミュレーション: AFORS-HET を用いて、Figure 1 に示す n/i/p 構造の MAPbI₃ 太陽電池のシミュレーションを行った^[2,3]。電子 輸送層(ETL)に TiO₂ (20nm)と n型 a-Si (10nm)を、ホール輸送層 (HTL)に spiro-OMeTAD (35nm)と p型 a-Si (10nm)を用い、比較 した。

結果および考察: Figure 2 に各デバイス構造のバンド図を、 Figure 3 に 1 sun 光照射下での電流密度-電圧(*J*-*V*)曲線を示す。 Table 1 に各セルの発電性能の結果をまとめた。

Table 1 Photovoltaic performance of perovskite solar cells.

	$V_{\rm OC}({\rm mV})$	$J_{\rm SC}$ (mA/cm ²)	FF (%)	PCE (%)
TiO ₂ /MAPbI ₃ /spiro	1134	22.19	78.89	19.84
n-a-Si/MAPbI ₃ /spiro	1103	20.04	80.35	17.77
TiO ₂ /MAPbI ₃ /p-a-Si	1127	22.32	85.84	21.6

シミュレーションの結果によると、p-a-Si を HTL に用いる構造で従来の構造より高い変換効率が得られた。高導電率を有する p-a-Si の利用による HTL での直列抵抗低減や、MAPbI₃層の内蔵電界増大の結果、FF が改善したことに起因する。この結果、p-a-Si は MAPbI₃太陽電池の HTL として機能すると期待される。一方、ETL に n-a-Si を使用したセルでは従来セルに比べ J_{sc} 、 V_{oc} が低下しており、ホールブロック性能の改善が求められる。

Fig. 1 Structure of perovskite solar cells.

Fig. 2 Band diagrams of perovskite solar cells with different carrier transport layers.

謝辞:本研究はJSPS 科研費 20H02838 の助成を受けて行われた。

参考文献: [1] 浜田 他, 第 66 回応用物理学会春季学術講演会講演予稿集, 11a-S221-5 (2019).

[2] R. Varache et al., Sol. Energy Mater Sol. Cells. 142, 14 (2015).

[3] A.Nakanishi et al., Phys. Status Solidi A 213, 1997 (2016).