Spin-orbit torque magnetization switching in a perpendicularly magnetized full Heusler alloy Co₂FeSi

[°] Miao Jiang¹, Eisuke Matsushita², Yota Takamura², Shigeki Nakagawa², Shinobu Ohya^{1,3,4} and Masaaki Tanaka^{1,3}

¹Dept. of Electrical Engineering and Information Systems, The Univ. of Tokyo ²Dept. of Electrical and Electronic Engineering, Tokyo Institute of Technology ³Center for Spintronics Research Network (CSRN), Graduate School of Engineering, The Univ. of Tokyo ⁴Institute of Engineering Innovation, Graduate School of Engineering, The Univ. of Tokyo Email: jiangmiao@g.ecc.u-tokyo.ac.jp

As one of the next-generation memory technologies, magnetic random access memory (MRAM) is of great research interest because of its non-volatility, high access speed, large integration density and low power consumption. Current-induced spin-orbit torque (SOT) magnetization switching has been proposed for improving the writing performance of MRAM. Meanwhile, it has been demonstrated that the Co-based full Heusler alloys show potential for increasing the magnetoresistance ratio and achieving efficient reading due to their relatively large spin polarization¹. Therefore, achieving the SOT magnetization switching in full Huesler alloys will be promising for optimizing both the reading and writing performance of MRAM devices.

Here, we report a successful full SOT magnetization switching in a perpendicularly magnetized full Heusler alloy Co₂FeSi² by using Pd as a spin current generating layer. A pulse current with a pulse width of 0.1 ms (Fig. 1a) is applied to induce the magnetization switching as shown in Fig. 1b. With the assistance of the external magnetic field of ± 500 Oe, the magnetization can be fully switched with a switching current density of 3.7×10^7 A cm⁻², which is in the same

Fig. 1. SOT switching in a Heusler alloy Co₂FeSi and quantitative characterization of the SOTs.

order of magnitude as that required in the conventional heavy metal (HM)/ferromagnet system even though the Pd shows a relatively smaller spin Hall angle than that of HM³. The damping-like and field-like effective fields (H_{DL} and H_{FL}) are quantified to be 70 Oe and 49 Oe, respectively by using harmonic Hall measurements as shown in Fig. 1c,d. Our finding will advance the development of MRAM with both better reading and writing performance.

This work was partly supported by Grants-in-Aid for Scientific Research (Nos. 18H03860, 20H05650, and 20F20366), CREST Program of JST (JPMJCR1777), Spintronics Research Network of Japan (Spin-RNJ), and Grant-in-Aid for JSPS Fellows (20F20366).

[1] Z. Wen et al., Adv. Mater. 26, 6483 (2014).

- [2] Y. Takamura et al., J. Magn. Soc. Jpn. 43, 120 (2019).
- [3] L. Liu et al., Phys. Rev. Lett. 109, 096602 (2012).