10 ポート光集積ユニタリ変換器の実証

Demonstration of a 10-Port Integrated Optical Unitary Converter

⁰唐 睿,田之村 亮汰,種村 拓夫,中野 義昭(東大工)

°Rui Tang, Ryota Tanomura, Takuo Tanemura, Yoshiaki Nakano (The University of Tokyo)

E-mail: rui.tang@hotaka.t.u-tokyo.ac.jp

1. 背景

光集積ユニタリ変換器 (OUC) はチップ上で任意 の光ユニタリ変換処理を実現できるため、光通信、 深層学習、量子情報処理などの幅広い応用が期待 されている[1]。マッハ・ツェンダー干渉計 (MZI) 型 OUC [2]と比較し、多ポート方向性結合器 (MDC)を用いた OUC は、作製誤差に特徴的な耐 性があることは示されており、これまでに4ポー ト規模の光回路が実証されている[3]。今回、シリ コンフォトニクスチップ上に、MDC 型素子とし て最大規模の 10 ポート OUC を実証したので報 告する[4]。

2. 動作原理

MDC型OUCの構造を図1に示す。MDC間の位 相シフト量を最適化することで、所望のユニタリ 変換を実現できる。変換精度が影響されにくい MDCの設計領域が存在するため、作製誤差に対 してロバストな素子が実現可能である[4]。

3. 実験結果

今回作製した 10 ポート OUC の顕微鏡写真を図 2に示す。12.2×3.6 mm²のシリコンフォトニクス チップ上に集積され、13 段の MDC と 14 段の熱 光学効果位相シフタアレイから構成される。カス タム設計した電気回路を用い、所望のユニタリ変 換が得られるように擬似アニーリング法により 各位相シフタへの印加電圧を最適化した。本実験 では波長 1.55 μm の連続光を用いた。

本構造の柔軟性を示す一例として、同一素子で TE と TM の両偏波モードにおいて置換行列を実 現した結果を図3に示す。なお、出力ポート3は、 ファイバアレイの製造誤差により結合損が遥か に大きくなってしまったため省いている。他のポ ートでは、両偏波について、最適化の結果、所望 の行列が得られていることが確認できる。クロス トーク(約-3 dB)がやや大きいが、ファイバアレ イを実装し、位相シフタの変調効率を改善するこ とで低減できると期待される。

4. 結論

シリコンフォトニクスチップ上に、MDC を用い た最大規模の 10 ポート OUC を実証した。同一 素子による TE・TM 両偏波での動作に初めて成功 し、本素子の柔軟性を実証した。

謝辞

本研究は、文部科学省科学研究費補助金 (26000010)の助成により実施された。

Fig. 1. Schematic of the OUC using MDCs.

Fig. 2. Microscope image of the fabricated 10-port OUC, which consists of 14 stages of thermo-optic phase shifter arrays and 13 stages of 10-port DC.

Fig. 3. Experimental results of optimizing the phase shifters to implement permutation matrices for the TE and TM polarization, respectively.

参考文献

- [1] W. Bogaerts et al., Nature 586, 207-216 (2020).
- [2] W. R. Clements et al., *Optica* **3**, 1460-1465 (2016).
- [3] R. Tanomura et al., J. Lightw. Technol. 38, 60-66 (2020).
- [4] R. Tang et al., *ACS Photonics* (2021), DOI: 10.1021/acsphotonics.1c00419.