(Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y+BaMO₃線材における臨界電流密度の膜厚依存性

Film thickness dependence of J_c for (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y + BaMO₃ coated conductors

成蹊大¹, Colorado School of Mines², 九工大³

○原田 工夢¹, 土屋 豪¹, Serena Eley², 木内 勝³, 松下 照男³, 三浦 正志¹

Seikei University¹, Colorado School of Mines², Kyushu Institute of Technology²

^oTakumu Harada¹, Go Tsuchiya¹, Masaru Kiuchi², Teruo Matsushita² and Masashi Miura¹

E-mail:dm206316@cc.seikei.ac.jp

1. はじめに

Trifluoroacetates Metal Organic Deposition(TFA - MOD) 法で作製した REBa2Cu3Oy 線材は、低コストかつ高い 磁場中臨界電流密度(J_)が得られるためマグネット応 用などに期待されている。しかし、マグネット応用に は、磁場中Jcではなく磁場中臨界電流(Ic)の更なる向上 が必要である。そこで我々は TFA-MOD 法を用いて BaZrO₃(BZO) ナノ 粒子 導入 (Y_{0.77}Gd_{0.23})Ba₂Cu₃O_y ((Y,Gd)BCO)膜の成長速度を制御し、1.9µm 厚まで高い Jcを維持し、77K 自己磁場下で Ic=760A/cm-width を得 ることに成功した[1,2]。さらに、近年 BZO ナノ粒子よ りも微細で高密度に導入できる BaHfO3(BHO)ナノ粒 子を導入した(Y,Gd)BCO+BHOは、BZO 導入線材より も高い磁場中」。を示すことを報告してきた[2,3]。しか し、膜厚の異なる(Y,Gd)BCO+BZO 及び+BHO におけ るよ特性やピンニング挙動の理解が重要と考えられる が、それらの議論は十分に行っていない。

本研究では、TFA - MOD 法 (Y,Gd)BCO+BMO 線材 の *J*_c の膜厚依存性を理解するために、膜厚の異なる (Y,Gd)BCO+BZO 及び+BHO 線材を作製し、結晶性、 自己磁場中及び磁場中*J*_cの膜厚依存性について検討す る。

2. 実験方法

本研究では、金属基板上に TFA-MOD 法を用いて膜 厚が異なる(Y,Gd)BCO 及び(Y,Gd)BCO+BMO(M = Zr, Hf)線材を作製した。本焼成後の(Y,Gd)BCO 及び (Y,Gd)BCO+BZO 線材の超伝導層の膜厚は、いずれも ~1.9[μ m]である。作製した線材の結晶性をX線回折法、 磁場中 J_c特性は四端子法を用いて測定した。

3. 実験結果

Fig.1(a)(b)に(Y,Gd)BCO 及び(Y,Gd)BCO+BZO 線材の T_c と面内配向性 $\Delta \phi$ の膜厚依存性を示す。いずれの線 材においても膜厚増加に伴う $T_c, \Delta \phi$ の大きな変化は見 られなかった。また、気相法 REBCO 膜において膜厚 増加に伴う a 軸配向相がよく確認されるが、TFA-MOD 法では $1.9\mu m$ まで L低下の要因である a 軸配向相や主 な異相はほとんど確認されなかった。Fig.1(c)に (Y,Gd)BCO 及び(Y,Gd)BCO+BZO 線材の膜厚に対する J_c 特性(77K、自己磁場)を示す。測定したすべての膜厚 で(Y,Gd)BCO+BZO 線材は(Y,Gd)BCO 線材より高い *J*。 特性を示すことが分かる。

当日の発表では、膜厚の異なる(Y,Gd)BCO 及び (Y,Gd)BCO+BMO線材の結晶性、磁束クリープ、微細 構造の結果を踏まえよの膜厚依存性について議論する。

Fig.1 Film thickness dependence of (a) T_c , (b) $\Delta \phi$, (c) self-field J_c at 77 K for (Y,Gd)BCO and (Y,Gd)BCO + BZO.

謝辞

本研究は、JST 創発的研究支援事業 JPMJFR202G の 支援を受けたものである。また、本研究の一部は日本 私立学校振興・共済事業団学術研究振興資金、JSPS 科 研費(18KK0414 及び 20H02184)の助成を受け実施した ものである。

参考文献

- M. Miura, Springer 2015 (ISBN:978-3-319-14477-1), chapter 1, pp.3-26
- [2] S. Eley et al. npj Quantum Materials (2018) 3:37
- [3] M. Miura et. al. NPG Asia Materials (2017) 9, e447.