Terahertz wave generation and detection in GaAs crystals enhanced by using tapered parallel plate waveguides as focusing optics

°Masahiko Tani¹, Ramon delos Santos², Takashi Furuya¹, Hideaki Kitahara¹, Elmer Estacio³, Joselito Muldera¹, Mary Clare Escaño¹, Miezel Talara¹, and Michael Bakunov⁴

¹Research Center for Development of Far-Infrared Region, Univ. of Fukui, ²Ateneo de Manila University, ³Univ. of the Philippines Dilliman, ⁴University of Nizhny Novgorod

E-mail: tani@fir.u-fukui.ac.jp

GaAs is a III-V semiconductor with zinc-blende structure and direct band gap of 1.43 eV at room temperature. GaAs has excellent potential as a nonlinear optical material for the generation and detection of terahertz (THz) waves with the excitation at the optical communication wavelengths (1.260-1.675 µm), where cost-effective, compact, and stable femtosecond lasers are available as a pump source. GaAs has several advantages over other nonlinear crystals, such as a large nonlinear coefficient (d_{eff} = 65.6 pm/V), low absorption and dispersion in the THz frequency range, and relatively small difference between the optical group and THz refractive indices. The last property allows for achieving good optical-THz phase matching conditions in the weakly noncollinear Cherenkov geometry. As indicated in Table 1, Cherenkov phase-matching angle in GaAs is around 12° [1], which is substantially smaller than in other representative nonlinear optical crystals. Due to the small Cherenkov angle, a long interaction length of the optical and THz beams is possible in GaAs [2] and no coupling optics is required to couple the generated THz waves to free-space radiation. In this paper, the authors report the results of their research and development of THz emitters and detectors using GaAs as a nonlinear optical medium and tapered parallel plate waveguides (TPPWGs) as a focusing device for THz waves [3-5]. We present a fully GaAs-based THz-TDS scheme that offers broadband (~3 THz) THz generation and detection and the dynamic range as high as 10^6 . In this scheme, the noncolinear Cherenkov phase-matching is implemented in ~6-10-mm long GaAs crystals. Using TPPWG allows for improving the scheme performance by a factor of $\sim 2-3$.

Crystal	r_{li} [pm/V]	d_{eff} [pm/V]	Optical index @	Group index @	THz index @1THz	Cherenkov angle
			1.55µm	1.55µm)	@ 1 THz
DAST	<i>r</i> ₁₁ =47@1535nm	$d_{11} = 615$	2.131	2.249	3.07	42.9°
	$r_{11}=77@800 \text{ nm}$					
LiNbO ₃	<i>r</i> ₃₃ =30.9@633nm	$d_{33} = 168$	2.138	2.18	4.76	63°
ZnTe	<i>r</i> ₄₁ =4.0@633nm	$d_{33} = 68.6$	2.733	2.8	3.17	28°
GaAs	$r_{41} = 1.5@1.5 \mu m$	$d_{36} = 65.6$	3.374	3.54	3.59	12°

Table 1. Optical properties of nonlinear optical crystals

Note: The values of the nonlinear optical coefficient for optical rectification $d_{eff} = -n_{\text{NIR}}^4 r_{li}/4$ are taken from [6]. Here, n_{NIR} is the refractive index in the near infrared region and r_{li} are the electro-optic coefficients.

References:

- [1] E. A. Mashkovich et al, IEEE Transactions on Terahertz Science and Technology, 5, 732-736 (2015).
- [2] A. I. Shugurov et al, Optics Express, 26, 23359-23365 (2018).
- [3] R. delos Santos et al, Optics Express, 24, 24980-24988 (2016).
- [4] R. delos Santos et al, J. IRMMW-THz Waves 39, 514-520 (2018).
- [5] T. Furuya *et al*, "Terahertz generation in a thin GaAs slab in a tapered parallel plate waveguide by femtosecond laser excitation at 1560 nm," submitted to Jpn. J. Appl. Phys.
- [6] J. Hebling et al, J. Opt. Soc. Am. B 25, 6-19 (2008).