Pt 結晶膜上の Ta2O5 圧電薄膜の成膜と SAW 伝搬特性の解析

Deposition and Analysis of SAW Propagation Properties of Ta₂O₅ Piezoelectric Thin Film on Pt Crystal Film

^O(M1)松浦 佳祐¹, 鈴木 雅視¹, 垣尾 省司¹, 小寺 正徳², 舟窪 浩²(¹山梨大, ²東工大) ^OKeisuke Matsuura¹, Masashi Suzuki¹, Shoji Kakio¹, Masanori Kodera², and Hiroshi Funakubo² (¹Univ. of Yamanashi, ²Tokyo Institute of Technology)

E-mail: g21te021@yamanashi.ac.jp

<u>1.はじめに</u>

スパッタリング法により成膜される X 軸配 向性五酸化タンタル(Ta₂O₅)薄膜は, ZnO 薄膜 と同等の圧電性を有することが見出されてい る^{III}.前報において, Si 基板上に成膜された白 金(Pt)結晶膜上に, RF マグネトロンスパッタリ ング装置を用いて Ta₂O₅ 薄膜を成膜した結果, Pt の格子面を感受し Ta₂O₅ 結晶薄膜がエピタ キシャル成長された可能性を示したが, Pt の格 子面を感受していない Ta₂O₅ 薄膜試料に比べ て圧電性が減少した^[2].

本報告では、Pt/Si 基板上に成膜した Ta₂O₅結 晶薄膜の結晶構造を評価した結果、および高密 度な Pt 膜を利用した SAW 粒子変位の集中効 果による高結合化について理論的に検討した 結果を報告する.

2. Ta2O5 薄膜の成膜と結晶構造の評価

RF マグネトロンスパッタリング装置を用い て、Pt/Si 基板上に基板温度 700~750°Cにて Ta₂O₅薄膜を成膜した (膜厚 h_1 は 1.8~3.1 µm). これらの薄膜は、X 線回折パターンから Pt の 格子面を感受した結晶薄膜である可能性を示 した.そこで、薄膜面内の結晶構造を評価する ため極点図を測定した.Fig.1 に、基板温度 700°Cの試料の回折角 20を 28°, 37°で固定した ときの極点図を示す.20=28°のとき χ =35°, 60° 付近、20=37°のとき χ =48°付近の同一円周上に ピークが観測されたことから、 λ -Ta₂O₅^[3]が成 長していると考えられる. λ -Ta₂O₅ は圧電性を 持たない結晶構造であるため、Pt の格子面を感 受していない試料よりも圧電性が減少したと 考えられる.

<u>3. Ta2O5/Pt/Si</u>構造の SAW 共振特性解析

Ta₂O₅/Pt/Si 構造上に無限周期のすだれ状電 極(IDT)を設けたモデルに対して,有限要素法 (Finite Element Method: FEM)を用いて SAW 共 振特性を解析した. IDT の波長 λ を 8 µm, Pt 規 格化膜厚(h_p / λ)を 0.01 とし,配向性 Ta₂O₅薄膜 の材料定数を用いた.Fig.2 に Ta₂O₅ 規格化膜 厚に対する Ta₂O₅/Pt/Si 構造と Ta₂O₅/Si 構造に おける実効的電気機械結合係数 K^2_{eff} を示す.Pt 中間層を設けることにより K^2_{eff} が増加するこ とがわかった.Fig.3 に各構造における L(Longitudinal),SH(Shear Horizontal),SV(Shear Vertical)方向の粒子変位を示す.SAW の粒子変 位が Pt 付近にも現れ,Ta₂O₅薄膜内に均等に分 布するために K^2_{eff} が増加すると考えられる.

Fig. 3 Simulated particle displacements.

謝辞 Pt/Si 基板を提供いただいた KRYSTAL 株式会社の皆様に感謝いたします.

参考文献

- [1] Y. Nakagawa and Y. Gomi, APL 46 (1985) 139.
- [2] 松浦, 他, 第68回応物春, 17p-Z13-3 (2021).
- [3] C. Valencia-Balvín, et al., TecnoLógicas 21 (2018) 43.