メチルチオ化ピレン単結晶の高性能有機トランジスタ

High-Performance Organic Field-Effect Transistors of Methylthiolated Pyrene Single Crystals

理研¹、東北大²、東北大 AIMR³、ボルド一大⁴ ○ブルガレビッチ キリル¹、瀧宮和男^{1,2,3}、アッパス ママティミン⁴、堀内信吾^{1,2}、大垣拓也¹、川畑公輔^{1,2}、アブラット アブルジズ⁴ RIKEN¹, Tohoku Univ.², AIMR Tohoku Univ.³, Univ. of Bordeaux⁴

°Kirill Bulgarevich¹, Kazuo Takimiya^{1,2,3}, Mamatimin Abbas⁴, Shingo Horiuchi^{1,2}, Takuya Ogaki¹, Kohsuke Kawabata^{1,2}, Abduleziz Ablat⁴

E-mail: takimiya@riken.jp, kirill.bulgarevich@riken.jp

分子軌道の 2 次元的な重なりを効率的に行うことができる herringbone、pitched π スタック、2 次元 π スタックなどの構造は、高移動度の有機電界効果トランジスタ(OFET)に有望であると考えられている。我々はこれまでに benzo[1,2-b:4,5-b']dithiophene のチオフェン環の β 位をメチルチオ化すると,結晶構造が親化合物の herringbone 型からルブレンと同様な pitched π スタック構造に選択的に変化することを発見した。同様に benzo[1,2-b:4,5-b']diselenophene や naphtho-/anthra-[2,3-b:6,7-b']dithiophene を例にとっても、 β 位のメチルチオ化が再現性良く pitched π スタック型への構造変化を誘発することが確認され、高性能な OFET が得られた。[1]

我々は本研究で、既知化合物でありながら結晶構造の報告が無かった 1,3,6,8-tetrakis(methylthio)pyrene(MT-pyrene)[2]が、親ピレンの二量体 herringbone 構造とは対照的に、新しいタイプの二次元 π スタック構造に結晶化することを発見した。この構造変化においてメチルチオ基は重要な役割を果たし、親ピレン構造における π 面と分子の端にある水素原子との間の CH- π 分子間相互作用を妨害して面と面との π スタッキングを実現している。物理気相輸送法を用いて作製した MT-pyrene 単結晶のOFET は、大気下で低電圧駆動(ドレインおよびゲート電

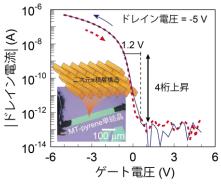


図 1. MT-pyrene 単結晶 OFET の伝達特性。 挿絵はデバイス写真と MT-pyrene の結晶 構造イメージ。

圧-5V)において理想的な特性と極めて高い移動度(平均 32 cm² V-¹ s⁻¹)を示した(図 1)。 さらに MT-pyrene 単結晶 OFET では、バンド伝導と非常に低いトラップ密度が実験的に確認され、MT-pyrene が単結晶 OFET に適した半導体材料であることが明かされた。[3]

- [1] C. Wang et al. Chem. Sci., 11, 1573–1580 (2020).
- [2] G. Heywang et al. Angew. Chem., Int. Ed. Engl. 30, 176-177 (1991).
- [3] K. Takimiya, K. Bulgarevich et al., Adv. Mater. (accepted).

【謝辞】本研究の一部はJSPS科研費 JP19H00906, JP20H05865および三菱財団の助成を受けて行われたものである。