Performance improvement of Si_{0.8}Ge_{0.2}/SOI p-FinFETs by ultrathin Y₂O₃ gate stacks with TMA treatment

^o T.-E. Lee¹, S.-T. Huang², C.-Y. Yang², K. Toprasertpong¹, M. Takenaka¹, Y.-J. Lee², and S. Takagi¹

¹The University of Tokyo, Japan

²Taiwan Semiconductor Research Institute, Taiwan

E-mail: leete@mosfet.t.u-tokyo.ac.jp

1. Introduction

The channel mobility and sub-threshold swing (S.S.) of high-k/SiGe MOSFETs are still degraded by high interface trap density (Dit) at SiGe MOS interfaces, which is attributable to undesired formation of Ge-O bonds near the interfaces [1]. We have recently reported the superior Si-cap-free SiGe MOS interfacial properties with low D_{it} by a combination of the TiN/6nm-thick Y₂O₃ gate stacks with TMA treatment and high temperature annealing, attributed to scavenging of GeO_x and healing of weak Ge-O bonds in SiGeO_x interfacial layers (ILs) by Y doping [1-3]. However, the properties of SiGe MOS interfaces with ultrathin Y₂O₃ gate stacks and their FET performance are still not clear. In this work, the electrical characteristics of a Si_{0.78}Ge_{0.22} gate stack with scaled 1.9-nm-thick Y₂O₃ such as D_{it} and leakage current (J_G) are examined. Moreover, Si_{0.8}Ge_{0.2}/SOI p-FinFETs with this gate stack are fabricated and the effectiveness of the ultrathin EOT Y2O3/SiGe stacks are demonstrated through the electrical characteristics.

2. Experiment

The details of the fabrication process and conditions of the capacitors are described in [3]. Here, the thickness of ALD Y₂O₃ deposition used in this study is 1.9nm. For the fabrication of FinFETs, after gate stack formation, boron ions were implanted with an energy of 10 keV and a dose of 1×10^{15} cm⁻² for S/D formation. Subsequently, activation annealing was performed at 350°C by CO₂ laser. Finally, contacts of the gate, source and drain were formed by Al/Ti.

3. Results and Discussion

The C-V curves and a TEM image of the TiN/1.9nm Y_2O_3 stacks with the TMA treatment are shown in Fig. 1(a) and (b), respectively. The hysteresis-free C-V curves with small hump in the depletion region are found. The CET value is estimated to be 1.43 nm. The thickness of amorphous Y_2O_3 and ILs of the stacks is observed to be 1.7 and 0.5 nm, respectively. Fig. 2(a) and (b) show the energy distributions of D_{it} and J_G as a function of effective E_{OX} , respectively, of the TiN/1.9nm Y_2O_3 stacks with and without the TMA treatment. The lower D_{it} in the stacks with the TMA treatment than that without the treatment is attributable to less amounts of Ge-O bonds at the SiGe interfaces [2,3].

Fig. 3 (a) and (b) summarize S.S. as a function of I_D and g_m/C_{ox} at V_D =-1V as a function of V_G , respectively, of Si_{0.8}Ge_{0.2}/SOI and pure SOI p-FinFETs at L_G of 40 nm. The channel fin height of Si_{0.8}Ge_{0.2}/SOI and pure SOI FinFETs, fabricated for comparison, is 80/20 nm and 100 nm, respectively. The two types of the gate stacks, Y_2O_3 with the TMA treatment and HfO₂ with the NH₃ treatment, were employed for Si_{0.8}Ge_{0.2}/SOI p-FinFETs, while SOI p-FinFETs have HfO₂/SiO₂ stacks as the control samples. These three gate stacks have the same EOT of 1 nm. It is found that S.S. is reduced by 40 % in the Si_{0.8}Ge_{0.2}/SOI p-FinFETs by changing the gate stacks from HfO₂ with the NH₃

treatment to Y_2O_3 with the TMA treatment. Moreover, Si_{0.8}Ge_{0.2}/SOI p-FinFETs with the Y_2O_3 exhibit 24% and 15% improvement in maximum g_m/C_{ox} against the SOI and Si_{0.8}Ge_{0.2}/SOI p-FinFETs with the HfO₂ stacks, respectively. The less trapped charge density can lead to suppression of coulomb scattering as well as the increase in surface carrier concentration at a given V_G, resulting in the improvement of the current drive of the FinFETs with the Y₂O₃/SiGe stacks.

4. Conclusions

The ultrathin TiN/Y₂O₃/SiGe gate stack with CET of 1.43 nm and the low D_{it} of 1×10^{11} eV⁻¹cm⁻² have been demonstrated by scaling the thickness of Y₂O₃ down to 1.9 nm and the incorporation of Al atoms in ILs through the TMA treatment. The improvement of the performance and reduction of S.S. have been found in the Si_{0.8}Ge_{0.2}/SOI p-FinFETs with this gate stack. Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (17H06148) from MEXT, and Ministry of Science and Technology under grant numbers MOST-109-2628-E-492-001-MY3.

References [1] C. H. Lee *et al.*, IEEE IEDM (2013) 40. [2] T.-E. Lee *et al*, Proc. VLSI Symp. (2019) 100. [3] T.-E. Lee *et al*, IEEE Trans. Electron Devices **67** (2020) 4067.

Fig. 3 (a) Sub-threshold swing as a function of I_D (b) g_m/C_{ox} as a function of $V_{\rm GS}$ of $Si_{0.8}Ge_{0.2}/SOI$ p-FinFETs and SOI p-FinFETs.