強誘電体基板上の高配向 V₃Si 薄膜成長 Growth of highly oriented V₃Si thin films on ferroelectric substrates 阪大基礎工¹, JST さきがけ², 阪大基礎工 CSRN³, 阪大工⁴ °(M1)浅尾 拓斗¹, 山田 道洋^{2,3}, 白土 優^{4,3}, 阿保 智¹, 真砂 啓³, 中谷 亮一^{4,3}, 小口多美夫³, 浜屋 宏平^{3,1} GSES, Osaka Univ.¹, JST-PRESTO², CSRN, Osaka Univ.³, GSE, Osaka Univ.⁴, °Takuto Asao¹,

Michihiro Yamada^{2,3} Yu Shiratsuchi^{4,3}, Satoshi Abo¹, Akira Masago³, Ryoichi Nakatani^{4,3},

Tamio Oguchi³, Kohei Hamaya^{3,1}

E-mail: u294478k@ecs.osaka-u.ac.jp

近年,高集積化と長いコヒーレンス時間などの実現への期待から,Si基板上のNbN系全エピタキ シャルジョセフソン接合の作製 [1]や,強誘電体上の鉄系超伝導エピタキシャル薄膜による超伝導転 移温度(*T*_c)の電界印加効果などが報告されている[2].本研究では,バルク単結晶の報告で*T*_cが17 Kと比較的高く,圧力印加による*T*_c変調の実績があるA15型超伝導物質V₃Si [3]に着目し,強誘電 体基板上へのV₃Si 薄膜の作製を探索した.

分子線エピタキシー法を用いて V₃Si 薄膜(50 nm)を SrTiO₃(STO)(111)基板または強誘電体 Pb(Mg_{1/3}Nb_{2/3})O₃-PbTiO₃(PMN-PT)(111)基板上に 350 °C で成長した[Fig. 1(a)]. STO 基板上への直 接成長では,成長中の反射高速電子線回折(RHEED)観察でリング状の回折パターン(多結晶薄膜) が観測されたが[Fig. 1(b)], Pd バッファー層(10 nm)を挿入した際にはストリーク状のパターンも 観測される傾向が見られた[Fig. 1(c)]. そのため, Pd バッファー層を挿入して PMN-PT 基板上へ の成長を試みたところ, STO 基板上と同様にストリーク状のパターンが観察された[Fig. 1(d)]. X 線回折測定からは, PMN-PT 基板上でも STO 上と同様に V₃Si の(210)と(211)のピークが観測さ れた[Fig. 1(e)]. Fig. 1(f)には Pd バッファー層を挿入した V₃Si 薄膜の抵抗率の温度依存性を示す. 両基板上の V₃Si 薄膜において超伝導を観測し, *T*_C は 7.5 ~ 8.5 K 程度であることが判った. Pd バッファー層のない STO 基板上の V₃Si 薄膜では超伝導が観測されなかったことから, 強誘電体 PMN-PT 基板上に超伝導 V₃Si 薄膜を作製するためには Pd バッファー層を用いることが重要で あると言える. 講演では, PMN-PT 上の V₃Si 薄膜に対する電界印加の効果についても報告する 予定である. 本研究の一部は,「スピントロニクス学術研究基盤と連携ネットワーク(Spin-RNJ))」の支援を受けて行われた.

[1] W. Qiu *et al.*, Appl. Phys. Express 13, 126501 (2020). [2] C. Mei *et al.*, ACS Appl. Mat. Interfaces 12, 12238 (2020). [3] T. F. Smith, Journal of Low Temp. Phys. 6, No. 1/2 (1971).

Fig. 1 (a) Schematic of the sample structures. RHEED patterns of the surface of the (b) V₃Si/STO, (c) V₃Si/Pd/STO(111) and (d) V₃Si/Pd/PMN-PT(111). (e) Out-of-plane x-ray diffraction patterns of V₃Si/Pd/STO(111) and V₃Si/Pd/PMN-PT(111). (f) ρ -*T* curves for the V₃Si films on Pd/STO and Pd/PMN-PT.