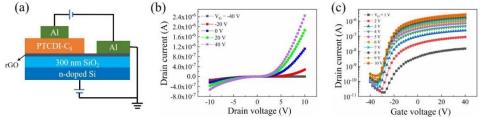
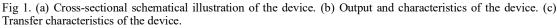
塗布成膜した還元型酸化グラフェン膜を用い縦た型有機トランジ

スタ

Vertical organic field-effect transistors using reduced solution-processed graphene oxide films


阪大院工¹, ^O乔 坤¹, 鈴木 充朗¹, 中山 健一¹


Osaka Univ.¹, °K. Qiao¹, M. Suzuki¹, K. Nakayama¹ E-mail: nakayama@mls.eng.osaka-u.ac.jp

Introduction: Vertical organic field effect transistors (VOFETs) with high current on/off ratio and easy fabrication process are highly desirable for future electronical applications. The graphene-based VOFETs have attracted considerable attention due to its gate-tunable Schottky barrier height at graphene-semiconductor heterojunctions. However, almost all these devices reported so far have utilized the monolayer graphene synthesized by chemical vapor deposition (CVD) method. Although this method can achieve high quality single-layer graphene, the complicated transfer process of graphene to the target substrate has severely limited its large-scale applications. Recently, we developed a promising method to prepare ultrathin reduced graphene oxide (rGO) film by spin coating graphene oxide (GO) dispersion ^[1], which could be effectively applied as a work function tunable electrode in VOFETs.

Experimental section: The highly purified graphene oxide dispersion was firstly spin-coated on a n-doped Si/SiO₂ wafer, followed by chemical and thermal reduction to obtain the rGO layer. Then PTCDI-C₈ and Al were subsequently deposited on the patterned rGO through a shadow mask using vacuum deposition equipment and the final device rGO-VOFETs was fabricated (Fig 1a).

<u>Results and discussion</u>: In the output characteristics (Fig 1b), drain current (I_D) increases as gate voltage (V_G) increases positively, indicating it is a typically n-channel transistor. The asymmetric rectifying behavior is observed at opposite side of drain voltage (V_D), with larger current modulation at positive side of V_D than that at negative side. It could be attributed to the gate-tunable injection barrier at rGO/PTCDI-C₈ interface. In the transfer characteristics (Fig 1c), both the drain current and gate leakage current (I_{gate}) increase with the increases of V_D , however, I_D increases more rapidly compared to that of I_{gate} , generating the highest current on/off ratio exceeding 10⁴. The maximum current density is 1.42 mA/cm² at $V_D = + 5$ V and $V_G = + 40$ V. The use of a simple solution-processable rGO as work function tunable electrode in VOFETs opens up a new opportunity for future large-scale application in organic electronics.

[1] K. Yamada, K. Nakayama et al., RSC Adv., 9, 32940 (2019)