シンターアニールによる Si 量子ドットの PL 強度増大効果

Sinter Annealing induced Enhancement of PL Intensity from Si Quantum Dots 神奈川大理,東京農工大工* ○村川洸紀,青木孝,鮫島俊之*,水野智久 Kanagawa Univ., Tokyo Univ. Agri. Tech.*,K. Murakawa,T. Aoki, T. Sameshima*, and T. Mizuno

1. 序論

我々は,Si 酸化膜中へのホットイオン 注入法により、IV族半導体量子ドット (IV-QD)が形成され,PL 発光することを報 告してきた[1],[2]. 一方、2D-Si からの PL 発光は、シンターアニール(H_2/N_2 ミック スガス: H_2 アニール)による SiO₂/Si 界 面準位低減化により、増大することも報 告されている[3].

今回、Si 酸化膜中の Si 量子ドット(Si-QD)における H_2 アニールの SiO_2 界面準位低減化による PL 特性への影響について検討したので報告する.

2. 実験

(100)Bulk-Si を熱酸化して 150nm の酸化膜を形成し,酸化膜層へホット Si イオン注入を行い,酸化膜中に Si-QD を形成した. Si-QD は Si⁺のドーズ量(Dsi)は 3×10^{16} cm⁻²,イオン注入温度は 600°Cで行った.その後,結晶性を回復させる為,温度 1000°Cにて N_2 アニール処理を行った.後,600°Cで H_2 アニール処理を行った.

PL スペクトルは, 2.3eV 励起レーザー を用いて室温にて測定した.

3. 結果及び討論

図 1 は,Si-QD の N_2 アニール 150 分後 の PL スペクトルデータと, H_2 アニール処理を 30 分追加で行った PL スペクトルの比較である. H_2 アニール処理を行うことで PL 強度が約 2.5 倍増大した.

図 2 は,Si-QD の PL ピーク強度のアニール時間依存である. N_2 アニールでは,時間依存して PL 強度が増大した. H_2 アニールでは 5min で急増し,その後 60min まで緩やかに増大した.

結論として、Si量子ドットにおいて、H2アニールによる界面準位の軽減化による

PL 強度の増大効果を確認できた.

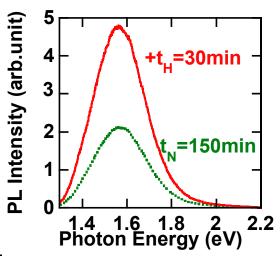


図 1. Si-QD の PL スペクトルの H₂ アニール 依存性.

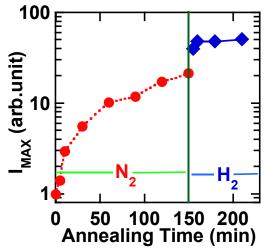


図 2. Si-QD の PL ピーク強度のアニール時間 依存性.

猫文

- [1] 村川他,第 68 回応用物理学会春季学術講演会, 19p-Z02-4.
- [2] 村川他,第 68 回応用物理学会春季学術講演会, 19p-Z02-5.
- [3] T.Mizuno et. al., JJAP 55, 04ED04 (2016).