Room-temperature spin diffusion length in strained SiGe

Osaka Univ. Grad. Sch. Eng. Sci.¹, JST-PRESTO², Osaka Univ. CSRN³, Tokyo City Univ.⁴,

^oTakahiro Naito¹, Michihiro Yamada^{2,3}, Youya Wagatsuma⁴, Shinya Yamada^{3,1},

Kentarou Sawano⁴, and Kohei Hamaya^{3,1}

E-mail: u925918h@ecs.osaka-u.ac.jp

Recent studies revealed that spin diffusion length (λ_s) and spin lifetime (τ_s) of electrons in Ge at room temperature are governed by phonon-induced spin-flip scattering between conduction band valleys (intervalley spin-flip scattering) [1]. So far, although we have shown the suppression of impurity-induced intervalley scattering in a strained Si_{0.1}Ge_{0.9} having a Ge-like band structure at low temperatures [2], the effect of the strain on room-temperature λ_s and τ_s has not been verified in Si_xGe_{1-x} ($0 \le x \le 0.4$).

A strained *n*-Si_{0.1}Ge_{0.9} spin transport layer (~70 nm) with a carrier concentration of $\sim 1.0 \times 10^{18}$ cm⁻³ and an electron mobility of \sim 823 cm²/Vs was grown on Ge/Si(111) substrates by molecular beam epitaxy (MBE). Then, we fabricated lateral spin-valve (LSV) devices with Co2MnSi/Fe spin injection/detection contacts, as shown in Fig.1 (a), for spin transport measurements. A representative four-terminal nonlocal spin signal ($|\Delta R_{\rm NL}|$) at room temperature is shown in Fig.1 (b) for an LSV with $d = 0.4 \mu m$, where d is edge-to-edge distance between Co₂MnSi/Fe contacts. Figure 1 (c) shows d-dependent $|\Delta R_{\rm NL}|$ at room temperature for LSV devices with the strained *n*-Si_{0.1}Ge_{0.9} and an *n*-Ge. From the standard theory, the value of λ_s for the strained *n*-Si_{0.1}Ge_{0.9} is estimated to be ~0.93 μ m, longer than λ_s (~0.76 μ m) for *n*-Ge. We attribute the enhancement in λ_s to the enhancement in the electron mobility and/or the suppression of intervalley spin-flip scattering by the strain-induced lifting of valley degeneracy.

Fig. 1(a) Schematic of an LSV device with a strained *n*-SiGe. (b) A four-terminal nonlocal spin signal measured at room temperature for an LSV with $d = 0.4 \, \mu m$. (c) *d*-dependence of $|\Delta R_{\rm NL}|$ for LSV devices with the strained *n*-Si_{0.1}Ge_{0.9} and an *n*-Ge at room temperature.

This work was supported in part by JSPS KAKENHI (Nos. 19H05616 and 17H06120), JST PRESTO (No. JPMJPR20BA), and Spin-RNJ. T. N. acknowledges JSPS Research Fellowship for Young Scientists (No. 21J20019).

[1] K. Hamaya et al., J. Phys. D: Appl. Phys. 51, 393001 (2018).

[2] T. Naito et al., Phys. Rev. Applied 13, 054025 (2020).