
Selective fabrication of Ca₂NH and CaNH epitaxial thin films using reactive magnetron sputtering

Tokyo Tech¹, JST-PRESTO², University of Tsukuba³, U Tokyo⁴, JAEA⁵ ^O(D) Seoungmin Chon¹, Ryota Shimizu^{1,2}, Yuki Sugisawa³, Shigeru Kobayashi¹, Kazunori Nishio¹, Markus Wilde⁴, Daiichiro Sekiba³, Katsuyuki Fukutani^{4,5}, and Taro Hitosugi¹ Email: chon.s.aa@m.titech.ac.jp

[Introduction] Calcium compounds combined with nitrogen and hydrogen attract attention as promising catalysts for NH₃ conversion. Among them, Ca₂NH and CaNH exhibit high catalytic performance in NH₃ synthesis and decomposition, respectively [1,2,3]. To quantitatively understand the mechanism of the catalytic reactions, epitaxial thin film surfaces provide an ideal platform due to well-defined size and crystal orientation. To date, however, neither Ca₂NH nor CaNH thin films have been reported. In this study, we report the selective fabrication of Ca2NH and CaNH epitaxial thin films using reactive magnetron sputtering.

[Experiment] Ca-N-H epitaxial thin films were deposited on MgO(110) substrates using reactive magnetron sputtering. A Ca metal plate (diameter of 1 inch) was used as a target material. The substrate temperature was set to 400 °C, and RF power of 30 W was supplied. The total pressure was set to 1.0 Pa, and the partial pressures of Ar, N₂, and H₂ gases (P_{Ar} , P_{N2} , and P_{H2} , respectively) were varied to explore the growth conditions. The structural properties were characterized by X-ray diffraction (XRD) and Raman spectroscopy. Chemical compositions were evaluated using Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). Due to the air-instability of the thin films, air-tight cells were used for the characterizations.

[Results and discussion] Figure 1a shows out-of-plane XRD patterns of thin films fabricated at different $P_{\rm H2}$ (0.02 – 0.38 Pa). At lower H₂ partial pressure ($P_{\rm H2}$) of 0.020 Pa, we observed a diffraction peak at $2\theta = 50.9^{\circ}$. As $P_{\rm H2}$ increased to 0.074 Pa, the 2θ position was shifted to 49.9°, suggesting the phase transition from Ca₂NH ($2\theta_{440} = 51.0^{\circ}$) to CaNH $(2\theta_{220} = 50.1^{\circ})$. Raman spectroscopy supports this phase transition scenario: a sharp peak corresponding to Ca₂NH appears at 321 cm⁻¹[1] for $P_{\rm H2} = 0.020$ Pa, whereas the peak is diminished as $P_{\rm H2}$ increased. The chemical compositions of thin films fabricated under $P_{\rm H2} = 0.020$ and 0.074 Pa were CaN_{0.55}H_{0.37} (~Ca₂N_{1.1}H_{0.73}) and CaN_{0.85}H_{0.82}, respectively. Fig. 1 P_{H2} dependence of (a) These results indicate that $P_{\rm H2}$ plays an important role in selective control of the Ca₂NH/CaNH phases in thin films. To the best of our knowledge, this study is the first report of metal-nitrogen-hydrogen epitaxial thin films.

100 300 500 700 900 Raman shift (cm⁻¹)

Out-of-plane XRD patterns and (b) Raman spectra.

- [1] M. Kitano et al., Chem. Sci., 2016, 7, 4036.
- [2] P. Yu et al., J. Energy Chem., 2020, 46, 16-21.

[3] K. Ogasawara et al., Proceeding of Annual/Fall meetings of the Japan Petroleum Institute, 2019, 26.