Wide-range epitaxial strain control of electrical and magnetic properties in high-quality SrRuO₃ films

Yuki K. Wakabayashi,^{1,*} Shingo Kaneta-Takada,¹ Yoshiharu Krockenberger,¹ Yoshitaka Taniyasu,¹ and Hideki Yamamoto¹ ¹NTT Basic Research Laboratories *E-mail: yuuki.wakabayashi.we@hco.ntt.co.jp

There is a strong relationship between the epitaxial strain in 4d ferromagnet SrRuO₃ films and its physical properties through the strong coupling between lattices, electrons, and spins [1]. It provides a promising way to tune the functionalities of SrRuO₃ in oxide electronics and spintronics. However, a comprehensive understanding of the strain effect in SrRuO₃ has remained elusive due to the lack of systematic studies.

In this presentation, we report on the wide-range epitaxial strain control of high quality SrRuO₃ thin films and the corresponding electrical and magnetic properties. We grew SrRuO₃ films with a thickness of 60 nm by our recently developed machine-learning assisted molecular beam epitaxy technique [2-4]. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates

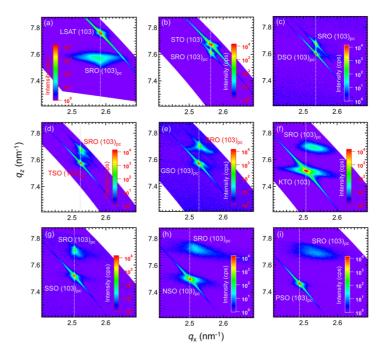


Figure 1 X-ray HRRSM around the $(103)_{pc}$ diffractions of the SrRuO₃ films on (a) (LaAlO₃)_{0.3}(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} (001), (b) SrTiO₃ (001), (c) DyScO₃ (110), (d) TbScO₃ (110), (e) GdScO₃ (110), (f) KTaO₃ (001), (g) SmScO₃ (110), (h) NdScO₃ (110), and (i) PrScO₃ (110) substrates. The white dashed lines indicate the peak positions of the (103) or (103)_{pc} diffractions of the substrates.

having a lattice mismatch of -1.6 to 2.3% with reference to bulk SrRuO₃ ($a_{bulk} = 3.93$ Å). We performed highresolution X-ray reciprocal space mapping (HRRSM) to characterize the crystallographic properties of the films [Fig. 1]. The coherent growth was realized when the in-plane strain ε_a is in the range of -0.7 to 1.5%, corresponding to the in-plane lattice constant a_{film} of 3.901 to 3.988 Å, except for $a_{film} = 3.953$ Å (on KTaO₃). Thus, the epitaxial SrRuO₃ films are relaxed when the distance between Ru and O ions [$d(Ru-O) = a_{film}/2$] is out of the range of 1.951 Å < d(Ru-O) < 1.994 Å, reflecting the increase of the strain energy. The Poisson ratio, which represents the two orthogonal distortions owing to the substrate clamping effect, is estimated to be 0.33. The Curie temperature (T_C) and residual resistivity ratios of the series of films are higher than or comparable to the highest reported values for SrRuO₃ on each substrate, confirming the high crystalline quality of the films. A T_C of 169 K is achieved in a tensile-strained SrRuO₃ film on the DyScO₃ (110) substrate, which is the highest value ever reported for SrRuO₃. The T_C (146-169 K), magnetic anisotropy (perpendicular or in-plane magnetic easy axis), and metallic conduction (residual resistivity at 2 K of 2.10 - 373 $\mu\Omega \cdot cm$) of SrRuO₃ are controlled widely by epitaxial strain [5]. These results provide guidelines to design SrRuO₃-based heterostructures for device applications.

References [1] G. Koster *et al.*, Rev. Mod. Phys. **84**, 253 (2012). [2] Y. K. Wakabayashi, *et al.*, APL Mater. **7**, 101114 (2019). [3] K. Takiguchi, Y. K. Wakabayashi, *et al.*, Nat. Commun. **11**, 4969 (2020). [4] S. Kaneta-Takada, Y. K. Wakabayashi, *et al.*, Appl. Phys. Lett. **118**, 092408 (2021). [5] Y. K. Wakabayashi, *et al.*, arXiv:2101.12376.