複合成膜により成膜された低屈折率 SiO2 光学薄膜の光散乱特性(4)

Light Scattering of Low Refractive Index SiO₂ Optical Thin Films Deposited by Sputtering and Electron Beam Evaporation Part 4

東海大院工¹, (株)シンクロン^{2 O(M2)}若宮 大生¹, 松本繁治², 室谷 裕志¹

Graduate School of Eng., Tokai Univ.¹ SHINCRON CO.LTD.²

Taisei Wakamiya¹, Shigeharu Matsumoto², Hiroshi Murotani¹

Email : murotani@keyaki.cc.u-tokai.ac.jp

1. 背景・目的

現在,実用されている低屈折率光学薄膜は,膜に微 細構造をもたせることにより有効屈折率を下げてい る.本研究室では,成膜時に圧力が大きく異なる EB (EB: Electron beam)蒸着法と DC パルス(DC: Direct current)スパッタリング法を同一真空容器内に設置し て同時に稼働させた状態でドームを回転することに より,2 種類の成膜を交互にかつ連続的に行う複合成 膜手法を開発した¹⁾.この複合成膜手法により,SiO₂ 光学薄膜の低屈折化に成功している.

これまでの研究では、複合成膜手法で成膜した低屈 折率 SiO₂ 光学薄膜の光散乱特性は DC パルス出力が 500W のとき、ミー散乱がわずかに発生し、1000W 以 上でレイリー散乱が支配的になることがわかってい るが、ミー散乱の発生原因が何であるかは明らかにな っていない.本研究では、複合成膜手法で成膜した低 屈折率薄膜における主要な散乱体を特定するために DC パルス出力 0W と 500W、1000W の複合成膜手法 で SiO₂ 光学薄膜を成膜し、スパッタ出力の有無や DC パルス出力による膜構造の違いから散乱体について 検討することを目的とした.

2. 実験方法

本実験では成膜用基板に表面粗さ Ra が 1nm の合成 石英を用いた.成膜方法は DC パルススパッタリング 法と EB 蒸着法の複合成膜手法と比較対象の EB 蒸着 法で SiO₂薄膜を成膜した.成膜時の EB 蒸着材料には SiO₂,スパッタリングターゲットには Si を使用し,ス パッタリングターゲットの下部と基板ドーム近傍か ら Ar と O₂を導入した.複合成膜手法の成膜条件は DC パルススパッタ出力を 0W すなわち放電させない 状態と 500W, 1000W で成膜した.成膜した SiO₂ 光学 薄膜の表面構造の違いを光学顕微鏡, SEM, AFM で観 察した.また,紫外可視近赤外分光光度計(JASCO: V-670)で分光正透過率と分光前方散乱率を測定した.

3. 結果·考察

複合成膜手法の DC パルス出力 0W と 500W で成膜 した SiO₂光学薄膜の AFM 画像を Fig.1 に,破断面を 鳥瞰で観察した SEM 画像を Fig.2 に示した. Fig.1 お よび Fig.2 より, DC パルス出力 0W では膜表面に数 100nm のひび割れが確認された.また, Fig.3 に示し た分光前方散乱スペクトルにおいて, DC パルス出力 0W で顕著な散乱が発生したことから,膜に発生した ひび割れによりミー散乱が発生したと考えられる.ま た, DC パルス出力に比例して散乱率が減少している ことから,スパッタリングにより膜のグレイン同士の 密着性が向上し,ひび割れが抑制されていると考えら れる.

Fig. 1 AFM images of SiO₂ optical thin films.

Fig. 2 SEM images of SiO₂ optical thin films.

Fig. 3 Light scattering spectra of SiO₂ optical thin films.

4. 結論

複合成膜手法によって成膜された低屈折率 SiO2 光 学薄膜のミー散乱に寄与する散乱体は膜に発生した ひび割れの可能性が高い.また,このひび割れはスパ ッタ出力に比例して抑制されると考えられる.

参考文献

学校法人東海大学、ファインクリスタル株式会社、株式会社シンクロン、成膜方法特許第 5901571 号. 2016-03-18.