High-efficiency and low-driving voltage solution-processed orangered OLEDs based on dibenzo[a,c]phenazine-based TADF emitters

^oDehao Jiang¹, Hisahiro Sasabe^{1,2,3}, Hiroki Arai¹, Kohei Nakao¹, Kengo Kumada¹, Junji Kido^{1,2,3} (1. Dept. of Organic Materials Science, Yamagata Univ., 2. Research Center for Organic Electronics, 3. Frontier Center for Organic Materials)

E-mail: h-sasabe@yz.yamagata-u.ac.jp, kid@yz.yamagata-u.ac.jp

[Introduction] Thermally activated delayed fluorescent (TADF) emitters based on purely organic elements have attracted much attention for the superior ability to achieve 100% internal quantum efficiency in organic lightemitting devices (OLEDs). Among visible color region, the development of orange-red TADF OLEDs is far behind blue and green TADF OLEDs, especially in solution-processed devices¹). In this work, we present novel orange-red TADF emitters based on dibenzo[a,c]phenazine (DBP) named **2DMAC-DBP-2tBuCz** and **2SPAC-DBP-2tBuCz**. Solution-processed device of **2SPAC-DBP-2tBuCz** exhibited a record-high EQE of 23.7% with an extremely low turn-on voltage at 2.3V.

[Experiments] Chemical structures of 2DMAC-DBP-2tBuCz and 2SPAC-DBP-2tBuCz are shown in Figure 1. Both emitters were prepared via a nucleophilic aromatic substitution followed by a Buchwald-Hartwig amination reaction, and characterized by NMR, mass spectrometry, and elemental analysis. The photoluminescence quantum yields (PLQY) of 2DMAC-DBP-2tBuCz and 2SPAC-DBP-2tBuCz in films with a series of doping concentrations were measured. Solution-processed OLEDs with a structure of [ITO(130nm)/ PEDOT:PSS(30nm)/ Poly-TPD/PVK(20nm)/ 20%Emitter :Co-Host(30nm)/ B4PYPPM(50nm)/LiF(0.5nm)/A1 (100 nm)] were prepared and the performances were tested. The co-host is composed of 26DCzPPY and TCTA.

[Results and discussion] mCPCN-doped films of **2DMAC-DBP-2tBuCz** and **2SPAC-DBP-2tBuCz** exhibited orange-red emission around 580 nm and high PLQY of 88% and 94%, respectively. From the onsets of fluorescence and phosphorescence spectra, the ΔE_{ST} are calculated to be 0.04 eV for **2DMAC-DBP-2tBuCz** and 0.03 eV for **2SPAC-DBP-2tBuCz**, respectively. By using a polymer HTL and co-host system, **2SPAC-DBP-2tBuCz**-based OLEDs achieves an EQE of 23.7% with a low V_{on} of 2.3V, which is among the best performance in solution-processed orange-red TADF OLEDs. We will discuss the influence of molecular structure on photophysical properties and device performances.

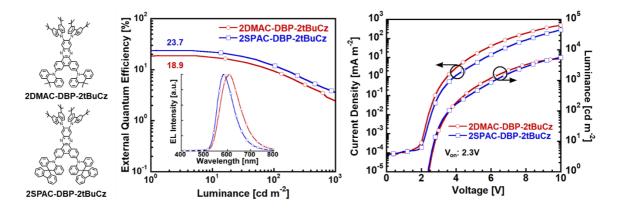


Fig 1. Chemical structures of 2DMAC-BP-2tBuCz and 2SPAC-BP-2tBuCz and OLED performances.

[References] 1) W. Zeng, T. Zhou, W. Ning, C. Zhong, J. He, S. Gong, G. Xie, C. Yang, *Adv. Mater* 2019, 31, 1901404.