フィラメントの合金化による抵抗保持時間の制御

Control of data retention time by alloying metal filaments 東理大理¹, 産総研², 鳥取大工³, 豊田理研⁴, 長瀬産業⁵ ^O佐藤暖^{1,2}, 松尾拓真^{1,2}, 佐藤洋士^{1,2}, 島久², 内藤泰久², 秋永広幸², 野上敏材³, 伊藤敏幸⁴, 小林正和⁵, 木下健太郎¹ Tokyo Univ. of Sci.¹, AIST², Tottori Univ.³, Toyota Physical and Chemical Research Institute⁴, NAGASE & CO., LTD.⁵

^OD. Sato^{1, 2}, T. Matsuo^{1, 2}, H. Sato^{1,2}, H. Shima², Y. Naitoh²,

H. Akinaga², T. Nokami³, T. Itoh⁴, M. Kobayashi⁵ and K. Kinoshita¹

E-mail: 1520526@ed.tus.ac.jp

【序論】これまで、イオン液体 (IL) を金属の酸化溶解、還元析出の反応場として利用した導電性 ブリッジメモリ (IL - CBRAM)、物理リザバーについて報告してきた^{III}. 両デバイスに共通して、 Cu の均等化反応 (Cu + Cu²⁺ \rightarrow 2Cu⁺) によって Cu フィラメント溶出速度が上昇し、抵抗保持時 間が短くなることが示された^[2]. 一方、一価のイオンを安定とする Ag を IL にドープすることで、 抵抗保持時間が長くなることが確認された^[3]. これらから、Cu と Ag の合金フィラメントを任意 の組成比で形成することができれば、抵抗保持時間が広く制御可能になることが期待される. 今 回、電極から Cu, IL から Ag を供給するデバイス構造を用い、形成された金属フィラメント (MF) の組成を明らかにした.

【実験方法】素子構造は Cu (50 nm) / SiO₂ (30 nm) / Pt (20 nm) である. Cu 上部にコンタクトパッド として Au (100 nm)を成膜し, SiO₂層には幅 300 nm のスリットを導入した. Ag⁺を 0.4 M ドープし た[Bmim][Tf₂N]溶液 (Ag - IL と記載)をスリット部分に滴下して電圧掃引することで MF を形成 し, オージェ電子分光法 (AES) で元素分析を行った.

【結果及び考察】Fig. 1 に MF 形成時の I - V特性を示す. この結果から素子が CBRAM として駆動していることが確認された. Fig. 2 に MF の SEM 像, Fig. 3 に SiO₂ 換算で 10 nm の Ar イオンスパッタクリーニング後の MF の面分析結果を示す. MF 内部では主に Ag (青),表面では主に Cu (赤)が検出された. 続いて MF の一点 (Fig. 3 中×印)で定性分析を行った結果, Ag/Cu モル比は 7.2 と測定された. この結果から,電極から Cu, IL から Ag が供給されて合金フィラメントが形成されることが確認された. 陽極反応に依存しない, Pt 等の電気化学的に不活性な電極で構成された物理リザバーに, Cu と Ag の両者がドープされた IL を供給することで,合金フィラメント形成/断裂の再現性,制御性が向上すると期待される.

[1] 松尾他, 第 68 回 応用物理学会春季学術講演会 17a-Z24-4 (2021). [2] H. Sato *et al.*, *Front. Nanotechnol.*, **3**, 660563 (2021). [3] 佐藤他, 第 67 回 応用物理学会春季学術講演会 12p-D411-12 (2020).

Fig. 1: I-V characteristics when the metal filament was formed.

Fig. 2: SEM image of the metal filament.

Fig. 3: Element mapping of the metal filament. Blue, red and green show Ag, Cu and Pt, respectively.