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Demonstration of enhanced second-harmonic generation in a SiC
photonic crystal waveguide-coupled nanocavity using a heterointerface
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Photonic crystal waveguide-coupled high-Q nanocavities provide not only highly-dense photonic
integrations, but also novel functions such as trapping and emission of photons [1], nonlinear frequency
conversions [2], and dynamic control of photons [3]. In principle, there is passing light through a photonic
crystal cavity, but the passed light can be fed again to the cavity by using a heterointerface with high
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considered that the heterointerfaces are also useful for 2 @& @@@aaaTe faaaae e

nonlinear optical devices [7]. Here, we demonstrate the

1
1
1
1
=

enhancement of nonlinear optical effect of second-

harmonic generation (SHG) in a SiC photonic crystal

waveguide-coupled  nanocavity by  using a ) . )
Fig. 1 Optical and SEM images of the

fabricated SiC photonic crystal waveguide-
photonic crystal waveguide-cavity system with a coupled cavity.

heterointerface. Figure 1 shows the fabricated SiC

heterointerface. The cavity is formed by modulating the
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lattice constants as @; = 530 nm, a» = 532.5 nm, and a3 = 535 nm. The Q= 70x105

input waveguide with the width W;,=0.69 \/§a1 (~633.75 nm) is

fan =2.23hm

placed on the 6 row (3\/§a1) from the cavity. In addition, a
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heterointerface is formed by reducing the width of the waveguide

from 633.75 nm to 505 nm as shown in the figure. A reference sample

765 770 775 780 785 790
without a heterointerface is also prepared for the comparison. Figure Wavelength (nm)

2(a) shows measured SHG spectrum of the cavity under the excitation % [e pemonstrated device with heterointerface

at the fundamental resonance (1556.8 nm). The center wavelength of A Reference (wio heterointerface)
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SHG is exactly half of the fundamental resonant wavelength. The O 5

factor of the cavity for the fundamental mode is as high as 7.0 x 10°. 1 times

Figure 2(b) shows the relations between the powers for the -
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fundamental light in the waveguide and the SHG powers in the cavity o P a0
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for samples with and without the heterointerface. The relations show Fig. 2 Measured (a) SHG (inset:
typical quadratic SHG characteristics. More importantly, the SHG fundamental) spectrum. (b) Relation
intensity of the cavity with a heterointerface is 11 times larger than between input power and SHG power.
that of the reference sample without a heterointerface. The experimental result agrees well with theory.
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