MnGa 垂直磁化膜における二次元電子状態 Two-dimensional Electronic State in a Ferromagnetic $L1_0$ MnGa Thin Film with Perpendicular Magnetization 東大工 ¹, 東大 CSRN², 東工大工 ³, 東大理 ⁴, 東大 ISSP⁵, NIMS⁶, 東北大理 ⁷, 東北大 WPI-AIMR⁸, 東北大 CSRN⁹, JST-PRESTO¹⁰, KEK-IMSS¹¹, 早大応物 ¹² [°]小林正起 ^{1,2}, N. H. D. Khang³, 武田崇仁 ¹, 荒木恒星 ¹, 岡野諒 ¹, 鈴木雅弘 ⁴, 黒田健太 ⁵, 矢治光一郎 ⁶, 菅原克明 ^{7,8,9,10}, 相馬清吾 ^{8,9}, 中山耕輔 ^{7,10}, 北村未歩 ¹¹, 堀場弘司 ¹¹, 藤森淳 ^{4,12}, 佐藤宇史 ^{7,8,9}, 辛埴 ⁵, 田中雅明 ^{1,2}, P. N. Hai^{2,3} Grad. Sch. Eng., Univ. of Tokyo¹, CSRN, Univ. of Tokyo², Tokyo Tech.³, Dep. Phys., Univ. of Tokyo⁴, ISSP, Univ. of Tokyo⁵, NIMS⁶, Dep. Phys., Tohoku Univ.⁷, WPI-AIMR, Tohoku Univ.⁸, CSRN, Tohoku Univ.⁹, JST-PREST¹⁰, KEK-IMSS¹¹, Dep. Appl. Phys., Waseda Univ.¹² °M. Kobayashi^{1,2}, N. H. D. Khang³, T. Takeda¹, K. Araki¹, R. Okano¹, M. Suzuki⁴, K. Kuroda⁵, K. Yaji⁶, K. Sugawara^{7,8,9,10}, S. Souma^{8,9}, K. Nakayama^{7,10}, M. Kitamura¹¹, K. Horiba¹¹, A. Fujimori^{4,12}, T. Sato^{7,8,9}, S. Shin⁵, M. Tanaka^{1,2}, and P. N. Hai^{2,3} E-mail: masaki.kobayashi@ee.t.u-tokyo.ac.jp Ferromagnetic thin films with perpendicular magnetization are key materials for high-density magnetic recording and other spintronics applications. $Mn_{1-x}Ga_x$ thin films with the $L1_0$ (or CuAu type) crystal structure (referred to as MnGa), which show strong perpendicular magnetic anisotropy (PMA), were successfully grown by molecular beam epitaxy (MBE) in the early 1990s [1,2]. Recently, spintronic device structures using MnGa layers have been studied, such as magnetic tunnel junctions [3] and spin-orbit torque devices [4]. To understand the properties of MaGa and the heterostructures using MnGa, it is important to characterize the electronic properties of MnGa. In this study, we have performed angle-resolved photoemission spectroscopy (ARPES) with vacuum ultra-violet light on a $L1_0$ MnGa thin film with PMA to elucidate the electronic states. The sample was a 10 nm-thick $Mn_{0.4}Ga_{0.6}$ film covered by an amorphous Se layer grown on a GaAs(001) substrate by MBE. The capping layer was removed by annealing before the measurements. Figure 1 shows an in-plane Fermi surface mapping with a photon energy $h\nu$ of 82 eV, which corresponds to the Γ -M-X plane of the Brillouin zone, measured on the MnGa thin film. The in-plane Fermi surface mapping demonstrates a diamond-like Fermi surface (FS) centered at the Γ point in the k_x - k_y (the [100] and [010] directions) plane. The large area of FS is consistent with the metallic nature of MnGa. This FS was likely independent of hv, indicating that the FS originates from two-dimensional (2D) bands. In contrast, the bulk band dispersion below the Fermi level changes with k_z . Since MnGa has the three-dimensional $L1_0$ crystal structure, the observed 2D electronic state is expected to come from surface states. To the authors' knowledge, this is the first observation of the band dispersion in a MnGa film with the clean surface using ARPES. Fig. 1. In-plane Fermi surface mapping of a MnGa thin film. Solid and dashed lines are lines crossing the zone centers and the Brillouin zone boundaries, respectively. **References** [1] K. M. Krishnan, Appl. Phys. Lett. **61**, 2365 (1992). [2] M. Tanaka *et al.*, Appl. Phys. Lett. **62**, 1565 (1993). [3] S. Mao *et al.*, Sci. Rep. 7, 43064 (2017). [4] N. H. D. Nguyen *et al.*, Nat. Mater. **17**, 808 (2018).