Interfacial Dzyaloshinskii–Moriya interaction in bilayers of kagome-lattice ferromagnet Fe₃Sn and Pt

IMR, Tohoku Univ.¹, Dept. Appl. Phys., Univ. Tokyo², CSRN, Tohoku Univ.³, CSIS, Tohoku Univ.⁴ °K. Fujiwara¹, Y. Kato², T. Seki^{1,3}, K. Nomura^{1,3}, K. Takanashi^{1,3,4}, Y. Motome², and A. Tsukazaki^{1,3,4} E-mail: kohei.fujiwara@tohoku.ac.jp

Kagome-lattice magnets such as Mn_3Sn and Fe_3Sn_2 have been studied intensively because of their attractive spintronic properties owing to Weyl points in momentum space. Another interesting feature is the geometrically frustrated triangular-based kagome lattice, which may allow for the stabilization of nontrivial spin textures like the skyrmion crystal via the tuning of magnetic interactions. Motivated by a recent report of the film growth of kagome-lattice ferromagnet Fe_3Sn on Pt with strong spin-orbit coupling [1], we attempted to artificially control the magnetic anisotropy of Fe_3Sn using the interfacial Dzyaloshinskii–Moriya interaction.

Multilayers of SiO_x cap / *t*-nm-thick $Fe_3Sn(0001)$ / 10-nm-thick Pt(111) were fabricated on Al₂O₃(0001) substrates by rf magnetron sputtering. The $D0_{19}$ -type Fe₃Sn phase and its orientation relationship with the underlying Pt layer were characterized by transmission electron microscopy. Figures 1(a) and (b) show magnetization M curves of t = 0.80and 0.48 nm, respectively, measured at T = 250 K in out-of-plane and in-plane magnetic fields H (M_{out} and M_{in}). For t = 0.80 nm, the M_{in} saturates at a low H, consistent with the in-plane magnetic anisotropy of the bulk [2]. In contrast, the M_{in} and M_{out} of t = 0.48 nm are comparable, suggesting that the magnetic anisotropy is modified by the interfacial Dzyaloshinskii-Moriya interaction. Interestingly, the films with modified magnetic anisotropy exhibited the unconventional Hall effect distinct from anomalous and ordinary Hall effects. On the basis of the t-dependent Hall

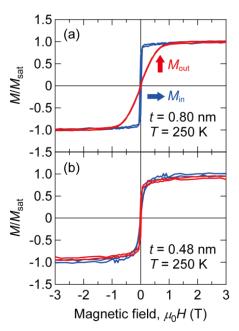


Fig. 1. (a) and (b) M (normalized by the saturation magnetization M_{sat} at 4–7 T) versus H curves at T = 250 K for t = 0.80 and 0.48 nm, respectively.

effect measurements and numerical simulation, we discuss that a non-coplanar spin state with finite scalar spin charity is induced by the interfacial Dzyaloshinskii–Moriya interaction [3].

- [1] A. Maeno et al., Ext. Abst. 80th JSAP Autumn Meeting, 18p-E216-16 (2019).
- [2] B. C. Sales et al., Sci. Rep. 4, 7024 (2014).
- [3] K. Fujiwara et al., submitted.