Electrical detection of surface conduction in magnetic Weyl semimetal Co₃Sn₂S₂ thin films

IMR, Tohoku Univ.¹, CSRN, Tohoku Univ.², CSIS, Tohoku Univ.³

[°]K. Fujiwara¹, J. Ikeda¹, J. Shiogai¹, T. Seki^{1,2}, K. Nomura^{1,2}, K. Takanashi^{1,2,3}, and A. Tsukazaki^{1,2,3} E-mail: kohei.fujiwara@tohoku.ac.jp

A shandite-type compound $Co_3Sn_2S_2$ has been identified as a magnetic Weyl semimetal through recent transport and spectroscopic studies. On the surface of $Co_3Sn_2S_2$, the Fermi arc that connects a pair of Weyl points is projected, resulting in topological surface states [1,2]. The surface states are expected to produce surface conduction robust against disorder, which can potentially be utilized for spintronic devices. However, it is difficult to detect the surface conduction with $Co_3Sn_2S_2$ bulk samples because the bulk conductance proportional to the sample thickness *t* overwhelms the surface conductance independent of *t* (Fig. 1). In this study, we used $Co_3Sn_2S_2$ thin films to suppress the contribution of bulk conductance and analyzed the *t*-dependence of sheet conductance G_s across the ferromagnetic transition temperature T_C [3].

The $Co_3Sn_2S_2$ thin films were grown on $Al_2O_3(0001)$ substrates by rf magnetron sputtering. We measured the *t*-dependence of G_s for the films t = 23-61 nm that exhibited the giant anomalous Hall effect below the $T_{\rm C} \sim 180$ K [4]. While the G_s data in the paramagnetic state were explained by the single bulk component $G_s \sim G_s^{bulk} \propto t$, the G_s data in the ferromagnetic phase showed a finite intercept at the limit of t = 0 nm. This indicates the occurrence of an additional *t*-independent conductance under the ferromagnetic condition. As shown in Fig. 2, the temperature dependence of the analyzed G_s at the limit of t = 0 nm is metallic, which is consistent with the Fermi arc-induced surface conduction in the magnetic Weyl semimetal phase. In this presentation, we will show the detailed analysis and discuss the dimensionality of the surface conducting channel.

- [1] D. F. Liu et al., Science 365, 1282 (2019).
- [2] N. Morali et al., Science 365, 1286 (2019).
- [3] J. Ikeda et al., Commun. Phys. 4, 117 (2021).
- [4] J. Ikeda et al., Commun. Mater. 2, 18 (2021).

Fig. 1. Surface conduction in magnetic Weyl semimetal $Co_3Sn_2S_2$.

Fig. 2. Temperature dependence of the G_s at the limit of t = 0 nm (FM: ferromagnetic state, PM: paramagnetic state).