レーザーアブレーションによるレーザー維持プラズマの着火条件の調査

Investigation of ignition conditions of laser sustained plasma by laser ablation **静岡大工¹ ○岡本 晃太¹**,石川 知義¹,髙野 成一郎¹,松井 信¹

Shizuoka Univ. ¹, °Kota Okamoto¹, Kazuyoshi Ishikawa¹, Seiichiro Takano¹, Makoto Matsui¹ E-mail: okamoto.kota.17@shizuoka.ac.jp

背景・目的

レーザー推進は、伝送されたレーザーを集光することでスポット付近にレーザー維持プラズマ (LSP)を生成し、これを熱源として推進力を得る新たな宇宙推進方法である。この推進方法は従来 の電気推進である DC アークジェットに比べて高比推力、長寿命化が期待できる。先行研究では、4 kW 級半導体レーザーを用いて Ar ガスを作動ガスとする LSP の生成に成功している。しかし、従来の方法だとアーク放電プラズマを種火として LSP を生成しており、推進機への応用の際にアーク放電用の電源と電極が不都合になる。そこで本研究では、アーク放電の代替手段としてレーザーアブレーションを用いて、Xe ガスによる LSP の着火条件を調査する。

実験系

本実験で用いた実験系を Fig.1 に示す. レーザー光を照射した後に, エアシリンダーで金属ロッドをレーザー光のスポット位置に押し出し, レーザーアブレーションを発生させる. その後, ロッドを引き下げ, LSP が生成されているかをカメラや分光器により確認する.

まとめ

カメラで取得したレーザーアブレーションの様子を Fig.2 に示す. レーザーアブレーションによる LSP の着火はいまだに確認できていない. 今後も引き続き LSP の着火条件を調査していく予定である.

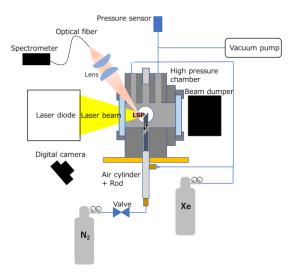


Fig.1 Schematics of LSP generation system.

Fig.2 Photograph of laser ablation.