時間分解ケルビンプローブフォース顕微鏡による 有機薄膜トランジスタにおけるキャリアダイナミクスの可視化

Visualization of Carrier Dynamics in Organic Thin Film Transistors

by Time-Resolved Kelvin Probe Force Microscopy

京大工, ^O河野 祐紀, 小林 圭, 山田 啓文 Dept. of Electronic Sci. & Eng., Kyoto Univ. [°]Yuki Kono, Kei Kobayashi, Hirofumi Yamada

E-mail: kono.yuki.67r@st.kyoto-u.ac.jp

近年、柔軟かつ軽量であり、作製プロセスが容易である有機薄膜トランジスタ(Organic Thin-film Transistor: OTFT)が注目を浴びている。OTFT は、金属電極一有機界面におけるチャネル注入障壁 やキャリアトラップなどが原因で電気特性を制限されてしまうことが問題視されており、真の律 速要因を明らかにするために電極界面,チャネル内におけるキャリア分布およびその動的挙動の 評価が必要である。われわれは、これまで原子間力顕微鏡(AFM)やケルビンプローブフォース顕 微鏡(Kelvin-probe Force Microscopy: KFM)を用いて OTFT におけるグレイン構造とキャリア挙動と の相関を評価してきた[1]。今回は、KFM および時間分解(time-resolved: tr)-KFM を用いてキャリア ダイナミクスの可視化を試みたので、その結果について報告する。

本研究では、300 nm 厚の熱酸化膜を有する n 型 Si 基板上に 20 nm 厚の Au/Cr 電極を作製し、 活性層としてジナフトチェノチオフェン(DNTT)を 70 nm 真空蒸着することでボトムゲート・ボト ムコンタクト型 OTFT を作製し、FM-KFM を用いて真空中で表面形状像と表面電位分布像を観察 した。Fig. 1 にチャネル近傍の表面形状像を示し、これと同時にソース電極を接地した状態でドレ イン電極にバイアスを -3 V 印加した時の表面電位を Fig. 2 に示す。また、ソースおよびドレイ ン電極を接地した状態でゲート電圧にパルス信号(-10 V, 50 ms)を印加した際のチャネル上の電位 変化の一例を Fig. 3 に示す。tr-KFM では、このような測定を探針の 2 次元走査中に繰り返し行っ て同様のデータを記録し、データを再構成することで時間分解能を得ることができる。

[1] Y. Yamagishi, K. Kobayashi, K. Noda, and H. Yamada, Appl. Phys. Lett., 108, 093302 (2016).