アルカリ土類金属イオンの SiNx, SiOx 膜への透過障壁のイオン半径依存性

Dependence of penetration barrier of alkaline earth metal ions into SiN_x and SiO_x films on ion radius

三菱電機(株) 〇奥友希, 戸塚正裕, 佐々木肇

Mitsubishi Electric Corporation, Tomoki Oku, Masahiro Totsuka and Hajime Sasaki E-mail: Oku.Tomoki@ap.MitsubishiElectric.co.jp

はじめに:保護膜の耐湿性劣化へのイオンの影響を分析するために,前報[1]では欠陥を有する SiN_x, SiO_x 膜へのアルカリ金属 イオン(Li⁺, Na⁺, K⁺, Rb⁺)の透過障壁 \angle E を分子軌道法(PM6 法 [2])で計算した.そこでは,イオン半径が小さいほど \angle E 小ではな く,膜種や空孔により \angle E 小のイオンが異なった.本報では,更に 空孔を有する SiN_x, SiO_x 膜へのアルカリ土類金属(Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺)の \angle E の計算を追加した.

計算:空孔を有する SiN_x, SiO_x 膜のモデルクラスターはイオンの 透過経路の Si, O, N 原子を除去し, N, O, Si ダングリングボンドの

m本, n本を水素で終端し, (NH)_m, (OH)_m, (SiH)_nを形成した. イオンの侵入深さ(Depth)と∠E は Fig. 1 に 示す様に原子層ごとに増減し, 空孔位置での∠E の最小値から生成エネルギー∠H_dを求めた.

結果: SiN_x 膜を透過するイオンの半径と \angle H_dの関係を Fig. 2 に示す. ①Mg²⁺のイオン半径で \angle H_dが極 小, ②Sr²⁺のイオン半径で \angle H_dが最小, ③(NH)_{m = 0,1,2,3,4}で表されるシリコン空孔(◇), (SiH)_{n = 0,1,2,3}で表さ れる窒素空孔(△)の位置で \angle H_dが小さくなる. 次に, SiO_x 膜でのイオン半径と \angle H_dの関係を Fig. 3 に示 す. ①Sr²⁺のイオン半径で \angle H_dが最小, ②(OH)_{m = 0,1,2,3,4}で表されるシリコン空孔(◇), (SiH)_{n = 0,1,2}で表さ れる酸素空孔(□)で \angle H_dが小さくなる. これから, アルカリ金属イオンを含めて, イオン半径だけで \angle H_dを 説明できないが, 周期(Li⁺→Na⁺→K⁺→Rb⁺および Be²⁺→Mg²⁺→Ca²⁺→Sr²⁺)による \angle H_dの変化パターン は類似していることが分かる. したがって, \angle H_dには, SiN_x 膜とSiO_x 膜の Si-N, Si-O ネットワークの隙間や 空孔サイズの差異に加えて, イオンの最外殻電子の特徴が反映していると考えられる. [1] 奥, 戸塚, 佐々木, 第 68 回春応物 16p-P12-1, [2] MO-G Version 1.0.6, Fujitsu limited, Tokyo, Japan (2011).

Fig. 2 Relationship between ion radius and $\angle H_d$ during the penetration of ions into SiN_x films.

Fig. 3 Relationship between ion radius and $\angle H_d$ during the penetration of ions into SiO_x films.